These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 4579004)
1. Reconstitution of D-lactate-dependent transport in membrane vesicles from a D-lactate dehydrogenase mutant of Escherichia coli. Reeves JP; Hong JS; Kaback HR Proc Natl Acad Sci U S A; 1973 Jul; 70(7):1917-21. PubMed ID: 4579004 [TBL] [Abstract][Full Text] [Related]
2. D-lactate dehydrogenase binding in Escherichia coli dld- membrane vesicles reconstituted for active transport. Short SA; Kaback HR; Kohn LD Proc Natl Acad Sci U S A; 1974 Apr; 71(4):1461-5. PubMed ID: 4598306 [TBL] [Abstract][Full Text] [Related]
3. Transport studies in bacterial membrane vesicles. Kaback HR Science; 1974 Dec; 186(4167):882-92. PubMed ID: 4620043 [TBL] [Abstract][Full Text] [Related]
4. Reconstitution of transport dependent on D-lactate or glycerol 3-phosphate in membrane vesicles of Escherichia coli deficient in the corresponding dehydrogenases. Futai M Biochemistry; 1974 May; 13(11):2327-33. PubMed ID: 4598623 [No Abstract] [Full Text] [Related]
5. D-lactate oxidation and generation of the proton electrochemical gradient in membrane vesicles from Escherichia coli GR19N and in proteoliposomes reconstituted with purified D-lactate dehydrogenase and cytochrome o oxidase. Matsushita K; Kaback HR Biochemistry; 1986 May; 25(9):2321-7. PubMed ID: 3013300 [TBL] [Abstract][Full Text] [Related]
6. Mutants of Salmonella typhimurium and Escherichia coli pleiotropically defective in active transport. Hong JS; Kaback HR Proc Natl Acad Sci U S A; 1972 Nov; 69(11):3336-40. PubMed ID: 4343963 [TBL] [Abstract][Full Text] [Related]
7. Transport of lactate and succinate by membrane vesicles of Escherichia coli, Bacillus subtilis and a pseudomonas species. Matin A; Konings WN Eur J Biochem; 1973 Apr; 34(1):58-67. PubMed ID: 4349657 [No Abstract] [Full Text] [Related]
8. Transport of succinate in Escherichia coli. III. Biochemical and genetic studies of the mechanism of transport in membrane vesicles. Lo TC; Rayman MK; Sanwal BD Can J Biochem; 1974 Oct; 52(10):854-66. PubMed ID: 4138960 [No Abstract] [Full Text] [Related]
9. Coupling of energy to active transport of amino acids in Escherichia coli. Simoni RD; Shallenberger MK Proc Natl Acad Sci U S A; 1972 Sep; 69(9):2663-7. PubMed ID: 4341704 [TBL] [Abstract][Full Text] [Related]
10. Reversible inactivation of vectorial phosphorylation by hydroxybutynoate in Escherichia coli membrane vesicles. Kaczorowski G; Kaback HR; Walsh C Biochemistry; 1975 Aug; 14(17):3903-8. PubMed ID: 1100101 [TBL] [Abstract][Full Text] [Related]
11. Mechanisms of active transport in isolated membrane vesicles. II. The mechanism of energy coupling between D-lactic dehydrogenase and beta-galactoside transport in membrane preparations from Escherichia coli. Kaback HR; Barnes EM J Biol Chem; 1971 Sep; 246(17):5523-31. PubMed ID: 4941946 [No Abstract] [Full Text] [Related]
12. Effect of lipids on the reconstitution of D-lactate oxidase in Escherichia coli membrane vesicles. George-Nascimento C; Wakil SJ; Short SA; Kaback HR J Biol Chem; 1976 Nov; 251(21):6662-6. PubMed ID: 789373 [TBL] [Abstract][Full Text] [Related]
13. Mechanisms of active transport in isolated membrane vesicles. I. The site of energy coupling between D-lactic dehydrogenase and beta-galactoside transport in Escherichia coli membrane vesicles. Barnes EM; Kaback HR J Biol Chem; 1971 Sep; 246(17):5518-22. PubMed ID: 4330922 [No Abstract] [Full Text] [Related]
14. Mechanisms of active transport in isolated bacterial membrane vesicles. X. Inactivation of D-lactate dehydrogenase and D-lactate dehydrogenase-coupled transport in Escherichia coli membrane vesicles by an acetylenic substrate. Walsh CT; Abeles RH; Kaback HR J Biol Chem; 1972 Dec; 247(24):7858-63. PubMed ID: 4565667 [No Abstract] [Full Text] [Related]
15. Ubiquinone-mediated coupling of NADH dehydrogenase to active transport in membrane vesicles from Escherichia coli. Stroobant P; Kaback HR Proc Natl Acad Sci U S A; 1975 Oct; 72(10):3970-4. PubMed ID: 672 [TBL] [Abstract][Full Text] [Related]
16. Solubilization and partial purification of amino acid-specific components of the D-lactate dehydrogenase-coupled amino acid-transport systems (E. coli-cell membranes-sephadex-detergent-solubilized-vesicles). Gordon AS; Lombardi FJ; Kaback HR Proc Natl Acad Sci U S A; 1972 Feb; 69(2):358-62. PubMed ID: 4333978 [TBL] [Abstract][Full Text] [Related]
17. Beta-galactoside transport in bacterial membrane preparations: energy coupling via membrane-bounded D-lactic dehydrogenase. Barnes EM; Kaback HR Proc Natl Acad Sci U S A; 1970 Aug; 66(4):1190-8. PubMed ID: 4394455 [TBL] [Abstract][Full Text] [Related]
18. Localization of D-lactate dehydrogenase in native and reconstituted Escherichia coli membrane vesicles. Short SA; Kaback HR; Kohn LD J Biol Chem; 1975 Jun; 250(11):4291-6. PubMed ID: 1092688 [TBL] [Abstract][Full Text] [Related]
19. Mechanisms of active transport in isolated bacterial membrane vesicles. VII. Fluorescence of 1-anilino-8-naphthalenesulfonate during D-lactate oxidation by membrane vesicles from Escherichia coli. Reeves JP; Lombardi FJ; Kaback HR J Biol Chem; 1972 Oct; 247(19):6204-11. PubMed ID: 4568608 [No Abstract] [Full Text] [Related]
20. Energetics and molecular biology of active transport in bacterial membrane vesicles. Kaback HR; Ramos S; Robertson DE; Stroobant P; Tokuda H J Supramol Struct; 1977; 7(3-4):443-61. PubMed ID: 357844 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]