These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 4579004)

  • 21. Mechanisms of active transport in isolated bacterial membrane vesicles. 8. The transport of amino acids by membranes prepared from Escherichia coli.
    Lombardi FJ; Kaback HR
    J Biol Chem; 1972 Dec; 247(24):7844-57. PubMed ID: 4344983
    [No Abstract]   [Full Text] [Related]  

  • 22. Control of phosphoenolpyruvate-dependent phosphotransferase-mediated sugar transport in Escherichia coli by energization of the cell membrane.
    Reider E; Wagner EF; Schweiger M
    Proc Natl Acad Sci U S A; 1979 Nov; 76(11):5529-33. PubMed ID: 392504
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative inhibition studies of the phosphotransferase and glycerophosphate acylation systems in membrane vesicles of Escherichia coli.
    NĂ©grel R; Ailhaud G; Mutaftschiev S
    Biochim Biophys Acta; 1973 Feb; 291(3):635-49. PubMed ID: 4144497
    [No Abstract]   [Full Text] [Related]  

  • 24. Active transport in Escherichia coli B membrane vesicles. Differential inactivating effects from the enzymatic oxidation of beta-chloro-L-alanine and beta-chloro-D-alanine.
    Kaczorowski G; Shaw L; Laura R; Walsh C
    J Biol Chem; 1975 Dec; 250(23):8921-30. PubMed ID: 1104610
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reconstitution of Escherichia coli membrane vesicles with D-amino acid dehydrogenase.
    Olsiewski PJ; Kaczorowski GJ; Walsh CT; Kaback HR
    Biochemistry; 1981 Oct; 20(21):6272-9. PubMed ID: 6118175
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simultaneous reconstitution of Escherichia coli membrane vesicles with D-lactate and D-amino acid dehydrogenases.
    Haldar K; Olsiewski PJ; Walsh C; Kaczorowski GJ; Bhaduri A; Kaback HR
    Biochemistry; 1982 Sep; 21(19):4590-6. PubMed ID: 6128026
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional mosaicism of membrane proteins in vesicles of Escherichia coli.
    Adler LW; Rosen BP
    J Bacteriol; 1977 Feb; 129(2):959-66. PubMed ID: 190212
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction of the membrane-bound D-lactate dehydrogenase of Escherichia coli with phospholipid vesicles and reconstitution of activity using a spin-labeled fatty acid as an electron acceptor: a magnetic resonance and biochemical study.
    Truong HT; Pratt EA; Ho C
    Biochemistry; 1991 Apr; 30(16):3893-8. PubMed ID: 1850292
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vinylglycolate resistance in Escherichia coli.
    Shaw L; Grau F; Kaback HR; Hong JS; Walsh C
    J Bacteriol; 1975 Mar; 121(3):1047-55. PubMed ID: 1090585
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transport of sugars and amino acids in bacteria. XV. Comparative studies on the effects of various energy poisons on the oxidative and phosphorylating activities and energy coupling reactions for the active transport systems for amino acids in E. coli.
    Anraku Y; Kin E; Tanaka Y
    J Biochem; 1975 Jul; 78(1):165-79. PubMed ID: 1104599
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dansyl-galactoside, a fluorescent probe of active transport in bacterial membrane vesicles.
    Reeves JP; Shechter E; Weil R; Kaback HR
    Proc Natl Acad Sci U S A; 1973 Oct; 70(10):2722-6. PubMed ID: 4583021
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Immunochemical properties of the membrane-bound D-lactate dehydrogenase from Escherichia coli.
    Short SA; Kaback HR; Hawkins T; Kohn LD
    J Biol Chem; 1975 Jun; 250(11):4285-90. PubMed ID: 805139
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A biochemical study of the reconstitution of D-lactate dehydrogenase-deficient membrane vesicles using fluorine-labeled components.
    Pratt EA; Jones JA; Cottam PF; Dowd SR; Ho C
    Biochim Biophys Acta; 1983 Apr; 729(2):167-75. PubMed ID: 6338924
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Active transport in bacterial cytoplasmic membrane vesicles.
    Kaback HR
    Symp Soc Exp Biol; 1973; 27():145-74. PubMed ID: 4594375
    [No Abstract]   [Full Text] [Related]  

  • 35. Transport across isolated bacterial cytoplasmic membranes.
    Kaback HR
    Biochim Biophys Acta; 1972 Aug; 265(3):367-416. PubMed ID: 4581579
    [No Abstract]   [Full Text] [Related]  

  • 36. Mechanisms of active transport in isolated membrane vesicles. IV. Galactose transport by isolated membrane vesicles from Escherichia coli.
    Kerwar GK; Gordon AS; Kaback HR
    J Biol Chem; 1972 Jan; 247(1):291-7. PubMed ID: 4623127
    [No Abstract]   [Full Text] [Related]  

  • 37. Coupling of alanine racemase and D-alanine dehydrogenase to active transport of amino acids in Escherichia coli B membrane vesicles.
    Kaczorowski G; Shaw L; F-entes M; Walsh C
    J Biol Chem; 1975 Apr; 250(8):2855-65. PubMed ID: 1091641
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanisms of active transport in isolated membrane vesicles. 2. The coupling of reduced phenazine methosulfate to the concentrative uptake of beta-galactosides and amino acids.
    Konings WN; Barnes EM; Kaback HR
    J Biol Chem; 1971 Oct; 246(19):5857-61. PubMed ID: 4331061
    [No Abstract]   [Full Text] [Related]  

  • 39. Transport of 2-keto-3-deoxy-D-gluconate in isolated membrane vesicles of Escherichia coli K12.
    Lagarde AE; Stoeber FR
    Eur J Biochem; 1974 Mar; 43(1):197-208. PubMed ID: 4601151
    [No Abstract]   [Full Text] [Related]  

  • 40. Active transport in Excherichia coli B membrane vesicles. Irreversible uncoupling by chloropyruvate.
    Kaczorowski G; Walsh C
    J Biol Chem; 1975 Dec; 250(23):8931-7. PubMed ID: 1104611
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.