These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 4579378)

  • 1. Production and decomposition of indoleacetic acid (IAA) by microorganisms isolated from the root zone of two crop plants.
    Strzelczyk E; Kampert M; Dahm H
    Acta Microbiol Pol B; 1973; 5(2):71-9. PubMed ID: 4579378
    [No Abstract]   [Full Text] [Related]  

  • 2. Production of auxins by bacteria isolated from the roots of pine seedlings (Pinus silvestris L.).
    Kampert M; Strzelczyk E; Pokojska A
    Acta Microbiol Pol B; 1975; 7(2):135-43. PubMed ID: 1166831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Studies on the tryptophan metabolism of Streptomycetes. II. Quantitative determination of appearing tryptophan metabolites and their metabolism].
    Teuscher G; Teuscher E
    Acta Biol Med Ger; 1967; 19(2):211-9. PubMed ID: 5591562
    [No Abstract]   [Full Text] [Related]  

  • 4. Identification of indole-3-acetic acid producing freshwater wetland rhizosphere bacteria associated with Juncus effusus L.
    Halda-Alija L
    Can J Microbiol; 2003 Dec; 49(12):781-7. PubMed ID: 15162203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth behaviour and indole acetic acid (IAA) production by a Rhizobium isolated from root nodules of Alysicarpus vaginalis DC.
    Bhattacharyya RN; Pati BR
    Acta Microbiol Immunol Hung; 2000; 47(1):41-51. PubMed ID: 10735189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Auxin production by bacteria associated with orchid roots].
    Tsavkelova EA; Cherdyntseva TA; Netrusov AI
    Mikrobiologiia; 2005; 74(1):55-62. PubMed ID: 15835779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of auxins by fungi isolated from the roots of pine seedings (Pinus silvestris L.) and from soil.
    Kampert M; Strzelczyk E
    Acta Microbiol Pol B; 1975; 7(4):223-30. PubMed ID: 1227253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioproduction of indoleacetic acid by a Rhizobium sp. from the root nodules of Desmodium gangeticum DC.
    Bhattacharyya RN; Basu PS
    Acta Microbiol Immunol Hung; 1997; 44(2):109-18. PubMed ID: 9330659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Azospirillum brasilense SP245 mutants in production of anthranilic and indolyl-3-acetic acids].
    Brodnikova NA; Katsy EI; Egorenkov DA; Panasenko VI
    Mol Gen Mikrobiol Virusol; 1992; (9-10):3-5. PubMed ID: 1298884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic effect of beneficial rhizosphere microflora in biocontrol and plant growth promotion.
    Kannan V; Sureendar R
    J Basic Microbiol; 2009 Apr; 49(2):158-64. PubMed ID: 18792056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities.
    Ahmad F; Ahmad I; Khan MS
    Microbiol Res; 2008; 163(2):173-81. PubMed ID: 16735107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of tryptophol and indolelactic acid by Cryptococcus neoformans.
    Gunasekaran M
    Mycologia; 1980; 72(3):578-85. PubMed ID: 6995832
    [No Abstract]   [Full Text] [Related]  

  • 13. Biosynthesis of auxins in tomato shoots.
    Wightman F
    Biochem Soc Symp; 1973; (38):247-75. PubMed ID: 4807460
    [No Abstract]   [Full Text] [Related]  

  • 14. Dissimilation of tryptophan and related indolic compounds by ruminal microorganisms in vitro.
    Yokoyama MT; Carlson JR
    Appl Microbiol; 1974 Mar; 27(3):540-8. PubMed ID: 4545142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of auxins from tryptophan and tryptophan-precursors by fungi isolated from mycorrhizae of pine (Pinus silvestris L.).
    Strzelczyk E; Sitek JM; Kowalski S
    Acta Microbiol Pol; 1977; 26(3):255-64. PubMed ID: 70970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indole-3-acetic acid (IAA) production in symbiotic and non-symbiotic nitrogen-fixing bacteria and its optimization by Taguchi design.
    Shokri D; Emtiazi G
    Curr Microbiol; 2010 Sep; 61(3):217-25. PubMed ID: 20526603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generic composition and nutritional requirements of bacteria isolated from three lakes.
    Donderski W; Strzelczyk E
    Acta Microbiol Pol B; 1974; 6(2):67-74. PubMed ID: 4599821
    [No Abstract]   [Full Text] [Related]  

  • 18. Production of indoleacetic acid by strains of the epiphytic bacteria Neptunomonas spp. isolated from the red alga Pyropia yezoensis and the seagrass Zostera marina.
    Matsuda R; Handayani ML; Sasaki H; Takechi K; Takano H; Takio S
    Arch Microbiol; 2018 Mar; 200(2):255-265. PubMed ID: 29018895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. "In vitro" enzymatic formation of an auxin-like substance from L-tryptophan.
    Gaspar T; Hofinger M
    Arch Int Physiol Biochim; 1968 Feb; 76(1):178-9. PubMed ID: 4175041
    [No Abstract]   [Full Text] [Related]  

  • 20. Degradation of tryptophan and related indolic compounds by ruminal bacteria, protozoa and their mixture in vitro.
    Mohammed N; Onodera R; Or-Rashid MM
    Amino Acids; 2003; 24(1-2):73-80. PubMed ID: 12624737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.