These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 4579540)

  • 21. Transport of sugars and amino acids in bacteria. XIV. Preferential inhibition of oxidase activities and active transport reactions for amino acids by azidebenzenes.
    Kin E; Anraku Y
    J Biochem; 1975 Jul; 78(1):159-63. PubMed ID: 127788
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transport of sugars and amino acids in bacteria. IV. Regulation of valine transport activity by valine and cysteine.
    Kanzaki S; Anraku Y
    J Biochem; 1971 Aug; 70(2):215-24. PubMed ID: 4937547
    [No Abstract]   [Full Text] [Related]  

  • 23. Transport of sugars and amino acids in bacteria. XVI. Theory and evaluation of a model for the membrane transport reaction mediated by a single carrier with three binding sites for substrate.
    Awazu S; Amanuma H; Morikawa A; Anraku Y
    J Biochem; 1975 Nov; 78(5):1047-56. PubMed ID: 765325
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of leucine transport and binding proteins in Escherichia coli.
    Oxender DL; Quay SC
    J Cell Physiol; 1976 Dec; 89(4):517-21. PubMed ID: 795811
    [No Abstract]   [Full Text] [Related]  

  • 25. Mapping of two loci affecting the regulation of branched-chain amino acid transport in Escherichia coli K-12.
    Anderson JJ; Quay SC; Oxender DL
    J Bacteriol; 1976 Apr; 126(1):80-90. PubMed ID: 770444
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetics of amino acid transport in bacteria.
    Halpern YS
    Annu Rev Genet; 1974; 8():103-33. PubMed ID: 4613254
    [No Abstract]   [Full Text] [Related]  

  • 27. A high-affinity uptake system for branched-chain amino acids in Saccharomyces cerevisiae.
    Tullin S; Gjermansen C; Kielland-Brandt MC
    Yeast; 1991 Dec; 7(9):933-41. PubMed ID: 1803818
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accumulation of keto acids during the growth cycle of Escherichia coli.
    Raunio R
    Acta Chem Scand; 1966; 20(1):11-6. PubMed ID: 5327037
    [No Abstract]   [Full Text] [Related]  

  • 29. Multiplicity of leucine transport systems in Escherichia coli K-12.
    Rahmanian M; Claus DR; Oxender DL
    J Bacteriol; 1973 Dec; 116(3):1258-66. PubMed ID: 4584809
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Amino-acid-binding protein released from Escherichia coli by osmotic shock.
    Piperno JR; Oxender DL
    J Biol Chem; 1966 Dec; 241(23):5732-4. PubMed ID: 5333202
    [No Abstract]   [Full Text] [Related]  

  • 31. Mutant strains of Escherichia coli K12 that use D-amino acids.
    Kuhn J; Somerville RL
    Proc Natl Acad Sci U S A; 1971 Oct; 68(10):2484-7. PubMed ID: 4400212
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The metabolism of the amino acids of Escherichia coli and other bacteria by the rumen ciliate Entodinium caudatum.
    Coleman GS
    J Gen Microbiol; 1967 Jun; 47(3):449-64. PubMed ID: 4962336
    [No Abstract]   [Full Text] [Related]  

  • 33. The effects of test doses of leucine, isoleucine or valine on plasma amino acid levels. The unique effect of leucine.
    Swendseid ME; Villalobos J; Figueroa WS; Drenick EJ
    Am J Clin Nutr; 1965 Nov; 17(5):317-21. PubMed ID: 5846904
    [No Abstract]   [Full Text] [Related]  

  • 34. Active transport of nonpolar amino acids in Chromatium vinosum.
    Cobb AD; Knaff DB
    Arch Biochem Biophys; 1985 Apr; 238(1):97-110. PubMed ID: 3985631
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biosynthesis of the branched-chain amino acids in the cyanobacterium Synechocystis PCC6803: existence of compensatory pathways.
    Kouhen OM; Joset F
    Curr Microbiol; 2002 Aug; 45(2):94-8. PubMed ID: 12070685
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transport of branched-chain amino acids in brain slices of developing and adult rats.
    Pajari M
    Acta Physiol Scand; 1984 Nov; 122(3):415-20. PubMed ID: 6516888
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Branched-chain amino acid transport in Streptococcus agalactiae.
    Moran JW
    Appl Environ Microbiol; 1980 Jul; 40(1):25-31. PubMed ID: 6447476
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Catabolism of leucine to branched-chain fatty acids in Staphylococcus xylosus.
    Beck HC; Hansen AM; Lauritsen FR
    J Appl Microbiol; 2004; 96(5):1185-93. PubMed ID: 15078537
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interference between leucine, isoleucine and valine during intestinal absorption.
    Szmelcman S; Guggenheim K
    Biochem J; 1966 Jul; 100(1):7-11. PubMed ID: 5965263
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transport of biosynthetic intermediates: homoserine and threonine uptake in Escherichia coli.
    Templeton BA; Savageau MA
    J Bacteriol; 1974 Mar; 117(3):1002-9. PubMed ID: 4591940
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.