These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 4579628)

  • 1. Stoicheiometry of lactose-H+ symport across the plasma membrane of Escherichia coli.
    West IC; Mitchell P
    Biochem J; 1973 Mar; 132(3):587-92. PubMed ID: 4579628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative analysis of proton-linked transport systems. The lactose permease of Escherichia coli.
    Booth IR; Mitchell WJ; Hamilton WA
    Biochem J; 1979 Sep; 182(3):687-96. PubMed ID: 42390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of active transport in isolated bacterial membrane vesicles. 18. The mechanism of action of carbonylcyanide m-chlorophenylhydrazone.
    Kaback HR; Reeves JP; Short SA; Lombardi FJ
    Arch Biochem Biophys; 1974 Jan; 160(1):215-22. PubMed ID: 4597558
    [No Abstract]   [Full Text] [Related]  

  • 4. Mechanisms of active transport in isolated bacterial membrane vesicles. VII. Fluorescence of 1-anilino-8-naphthalenesulfonate during D-lactate oxidation by membrane vesicles from Escherichia coli.
    Reeves JP; Lombardi FJ; Kaback HR
    J Biol Chem; 1972 Oct; 247(19):6204-11. PubMed ID: 4568608
    [No Abstract]   [Full Text] [Related]  

  • 5. Counterflow of galactosides in Escherichia coli.
    Wong PT; Wilson TH
    Biochim Biophys Acta; 1970; 196(2):336-50. PubMed ID: 4905619
    [No Abstract]   [Full Text] [Related]  

  • 6. Mechanisms of active transport in isolated membrane vesicles. II. The mechanism of energy coupling between D-lactic dehydrogenase and beta-galactoside transport in membrane preparations from Escherichia coli.
    Kaback HR; Barnes EM
    J Biol Chem; 1971 Sep; 246(17):5523-31. PubMed ID: 4941946
    [No Abstract]   [Full Text] [Related]  

  • 7. Mechanisms of active transport in isolated membrane vesicles. I. The site of energy coupling between D-lactic dehydrogenase and beta-galactoside transport in Escherichia coli membrane vesicles.
    Barnes EM; Kaback HR
    J Biol Chem; 1971 Sep; 246(17):5518-22. PubMed ID: 4330922
    [No Abstract]   [Full Text] [Related]  

  • 8. Differences in uncoupling effects associated with the uptake of lactose and dansyl-galactoside in Escherichia coli membrane: active transport versus specific binding.
    Ghazi A; Therisod H; Shechter E
    Arch Biochem Biophys; 1980 Jun; 202(1):126-36. PubMed ID: 6994654
    [No Abstract]   [Full Text] [Related]  

  • 9. Uncoupler and anaerobic resistant transport of phosphate in Escherichia coli.
    Rae AS; Strickland KP
    Biochem Biophys Res Commun; 1975 Feb; 62(3):568-76. PubMed ID: 1091263
    [No Abstract]   [Full Text] [Related]  

  • 10. Basic amino acid transport in Escherichia coli.
    Rosen BP
    J Biol Chem; 1971 Jun; 246(11):3653-62. PubMed ID: 4931309
    [No Abstract]   [Full Text] [Related]  

  • 11. Anaerobic transport in Escherichia coli membrane vesicles.
    Konings WN; Kaback HR
    Proc Natl Acad Sci U S A; 1973 Dec; 70(12):3376-81. PubMed ID: 4587250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton/sodium ion antiport in Escherichia coli.
    West IC; Mitchell P
    Biochem J; 1974 Oct; 144(1):87-90. PubMed ID: 4618479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mutant of Escherichia coli K 12 energy-uncoupled for lactose transport.
    Wilson TH; Kusch M
    Biochim Biophys Acta; 1972 Mar; 255(3):786-97. PubMed ID: 4553495
    [No Abstract]   [Full Text] [Related]  

  • 14. Energy-linked transport of permeant ions in Escherichia coli cells: evidence for membrane potential generation by proton-pump.
    Griniuviene B; Chmieliauskaite V; Grinius L
    Biochem Biophys Res Commun; 1974 Jan; 56(1):206-13. PubMed ID: 4595971
    [No Abstract]   [Full Text] [Related]  

  • 15. Lactose transport coupled to proton movements in Escherichia coli.
    West IC
    Biochem Biophys Res Commun; 1970 Nov; 41(3):655-61. PubMed ID: 4920870
    [No Abstract]   [Full Text] [Related]  

  • 16. Lactose transport in Escherichia coli: effect of transmembrane potential difference on apparent substrate affinity.
    Wright JK; Overath P
    Biochem Soc Trans; 1980 Jun; 8(3):279-81. PubMed ID: 6995200
    [No Abstract]   [Full Text] [Related]  

  • 17. The effects of partial and selective reduction in the components of the proton-motive force on lactose uptake in Escherichia coli.
    Ahmed S; Booth IR
    Biochem J; 1981 Dec; 200(3):583-9. PubMed ID: 6282254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of lactose translocation in membrane vesicles from Escherichia coli. 2. Effect of imposed delata psi, delta pH, and Delta mu H+.
    Kaczorowski GJ; Robertson DE; Kaback HR
    Biochemistry; 1979 Aug; 18(17):3697-704. PubMed ID: 38837
    [No Abstract]   [Full Text] [Related]  

  • 19. Galactoside-proton symport in a lacYUN mutant of Escherichia coli investigated by analysis of transport progress curves.
    Page MG
    Biochem J; 1987 Mar; 242(2):539-50. PubMed ID: 3036093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of the proton motive force and electron flow in solute transport in Escherichia coli.
    Elferink MG; Hellingwerf KJ; Konings WN
    Eur J Biochem; 1985 Nov; 153(1):161-5. PubMed ID: 2415360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.