These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 4581296)

  • 1. Assignment of the low field proton nuclear magnetic resonance spectrum of yeast phenylalanine transfer RNA to specific base pairs.
    Lightfoot DR; Wong KL; Kearns DR; Reid BR; Shulman RG
    J Mol Biol; 1973 Jun; 78(1):71-89. PubMed ID: 4581296
    [No Abstract]   [Full Text] [Related]  

  • 2. Investigation of exchangeable protons and the extent of base pairings in yeast phenylalanine transfer RNA by high resolution nuclear magnetic resonance.
    Wong YP; Kearns DR; Reid BR; Shulman RG
    J Mol Biol; 1972 Dec; 72(3):725-40. PubMed ID: 4573845
    [No Abstract]   [Full Text] [Related]  

  • 3. High resolution nuclear magnetic resonance study of base pairing in the native and denaturated conformers of transfer RNA Leu 3 .
    Wong YP; Kearns DR; Shulman RG; Yamane T; Chang S; Chirikjian JG; Fresco JR
    J Mol Biol; 1973 Mar; 74(3):403-6. PubMed ID: 4571235
    [No Abstract]   [Full Text] [Related]  

  • 4. Identification of tertiary base pair resonances in the nuclear magnetic resonance spectra of transfer ribonucleic acid.
    Reid BR; McCollum L; Ribeiro NS; Abbate J; Hurd RE
    Biochemistry; 1979 Sep; 18(18):3996-4005. PubMed ID: 385039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The extent of base pairing in 5 s RNA. Yeast 5 s RNA.
    Wong YP; Kearns DR; Reid BR; Shulman RG
    J Mol Biol; 1972 Dec; 72(3):741-9. PubMed ID: 4573846
    [No Abstract]   [Full Text] [Related]  

  • 6. High resolution NMR study of the melting of yeast tRNA Phe.
    Hilbers CW; Shulman RG; Kim SH
    Biochem Biophys Res Commun; 1973 Dec; 55(3):953-60. PubMed ID: 4586623
    [No Abstract]   [Full Text] [Related]  

  • 7. Nuclear Overhauser effect in specifically deuterated macromolecules: NMR assay for unusual base pairing in transfer RNA.
    Sánchez V; Redfield AG; Johnston PD; Tropp J
    Proc Natl Acad Sci U S A; 1980 Oct; 77(10):5659-62. PubMed ID: 7003592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a unique ethidium bromide binding site on yeast tRNAPhe by high resolution (300 MHz) nuclear magnetic resonance.
    Jones CR; Kearns DR
    Biochemistry; 1975 Jun; 14(12):2660-5. PubMed ID: 1096934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The electrostatic molecular potential of tRNAPhe. IV. The potentials and steric accessibilities of sites associated with the bases.
    Lavery R; Pullman A; Pullman B; de Oliveira M
    Nucleic Acids Res; 1980 Nov; 8(21):5095-111. PubMed ID: 7003548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of the phosphorescent bases of yeast phenylalanine transfer RNA with the aid of optical detection of magnetic resonance.
    Hoover RJ; Luk KF; Maki AH
    J Mol Biol; 1974 Oct; 89(2):363-78. PubMed ID: 4613861
    [No Abstract]   [Full Text] [Related]  

  • 11. Preparation and characterization of fragments from yeast tRNA phe .
    Harbers K; Thiebe R; Zachau HG
    Eur J Biochem; 1972 Mar; 26(1):132-43. PubMed ID: 4339645
    [No Abstract]   [Full Text] [Related]  

  • 12. Crystallographic refinement of yeast phenylalanine transfer RNA at 2-5A resolution.
    Jack A; Ladner JE; Klug A
    J Mol Biol; 1976 Dec; 108(4):619-49. PubMed ID: 798036
    [No Abstract]   [Full Text] [Related]  

  • 13. Demonstration of the GC-rich common arm in yeast ribosomal 5.8S RNA via 500-MHz proton nuclear magnetic resonance and Overhauser enhancements.
    Lee KM; Marshall AG
    Biochemistry; 1986 Dec; 25(25):8245-52. PubMed ID: 3545290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthetic studies of the Y base in yeast phenylalanine tRNA. Incorporation of guanine.
    Li HJ; Nakanishi K; Grunberger D; Weinstein IB
    Biochem Biophys Res Commun; 1973 Dec; 55(3):818-23. PubMed ID: 4586620
    [No Abstract]   [Full Text] [Related]  

  • 15. Incorrect aminoacylatins catalysed by the phenylalanyl-and valyl-tRNA synthetases from yeast.
    Kern D; Giegé R; Ebel JP
    Eur J Biochem; 1972 Nov; 31(1):148-55. PubMed ID: 4565518
    [No Abstract]   [Full Text] [Related]  

  • 16. Investigation of the secondary structure of Escherichia coli 5 S RNA by high-resolution nuclear magnetic resonance.
    Kearns DR; Wong YP
    J Mol Biol; 1974 Aug; 87(4):755-74. PubMed ID: 4610155
    [No Abstract]   [Full Text] [Related]  

  • 17. Conformation of charged and uncharged tRNA.
    Wong YP; Reid BR; Kearns DR
    Proc Natl Acad Sci U S A; 1973 Aug; 70(8):2193-5. PubMed ID: 4599618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of resonances from some minor bases in the natural-abundance carbon-13 nuclear magnetic resonance spectrum of unfractionated yeast transfer ribonucleic acid. Evidence for fast internal motion of the dihydrouracil rings.
    Komoroski RA; Allerhand A
    Biochemistry; 1974 Jan; 13(2):369-72. PubMed ID: 4589310
    [No Abstract]   [Full Text] [Related]  

  • 19. NMR evidence for common tertiary structure base pairs in yeast and E. coli tRNA.
    Bolton PH; Kearns DR
    Nature; 1975 May; 255(5506):347-9. PubMed ID: 1093043
    [No Abstract]   [Full Text] [Related]  

  • 20. [Reactivity of the 3'-terminal oligonucleotide Sequence C-A-C-C-A of tRNAPhe and tRNAVal from baker's yeast upon N-oxidation with monoperphthalic acid as compared to the oligonucleotides C-A-C-C-A and A-A-A-U-C-A-C-C-A (author's transl)].
    Solfert R; von der Haar F; Sternbach H; Sprinzl M; Cramer F
    Hoppe Seylers Z Physiol Chem; 1975 Nov; 356(11):1811-9. PubMed ID: 1107201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.