These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 4582371)

  • 1. Phosphorus-31 relaxation rate studies of Mn 2+-alkaline phosphatase.
    Zukin RS; Hollis DB; Gray GA
    Biochem Biophys Res Commun; 1973 Jul; 53(1):239-43. PubMed ID: 4582371
    [No Abstract]   [Full Text] [Related]  

  • 2. 31 P NMR studies on phosphate binding to the Zn 2+ , Co 2+ and Mn 2+ forms of escherichia coli alkaline phosphatase.
    Csopak H; Drakenberg T
    FEBS Lett; 1973 Mar; 30(3):296-300. PubMed ID: 4573438
    [No Abstract]   [Full Text] [Related]  

  • 3. The Mn2plus-alkaline phosphatase of E. coli.
    Chappelet D; Lazdunski C; Petitclerc C; Lazdunski M
    Biochem Biophys Res Commun; 1970 Jul; 40(1):91-6. PubMed ID: 4318588
    [No Abstract]   [Full Text] [Related]  

  • 4. Phosphate binding to alkaline phosphatase. Metal ion dependence.
    Applebury ML; Johnson BP; Coleman JE
    J Biol Chem; 1970 Oct; 245(19):4968-76. PubMed ID: 4319108
    [No Abstract]   [Full Text] [Related]  

  • 5. The mechanistic significance of phosphate labeling of alkaline phosphatase.
    Reid TW; Pavlic M; Sullivan DJ; Wilson IB
    Biochemistry; 1969 Aug; 8(8):3184-8. PubMed ID: 4897329
    [No Abstract]   [Full Text] [Related]  

  • 6. Negative homotropic interactions in binding of substrate to alkaline phosphatase of Escherichia coli.
    Simpson RT; Valee BL
    Biochemistry; 1970 Feb; 9(4):953-8. PubMed ID: 4906908
    [No Abstract]   [Full Text] [Related]  

  • 7. Formation and properties of a tetrameric form of Escherichia coli alkaline phosphatase.
    Reynolds JA; Schlesinger MJ
    Biochemistry; 1969 Nov; 8(11):4278-82. PubMed ID: 4900990
    [No Abstract]   [Full Text] [Related]  

  • 8. Mn(II) alkaline phosphatase. Electron spin resonance and 31P nuclear magnetic resonance.
    Weiner RE; Chlebowski JF; Haffner PH; Coleman JE
    J Biol Chem; 1979 Oct; 254(19):9739-46. PubMed ID: 226527
    [No Abstract]   [Full Text] [Related]  

  • 9. 31P nuclear magnetic resonance study of alkaline phosphatase: the role of inorganic phosphate in limiting the enzyme turnover rate at alkaline pH.
    Hull WE; Halford SE; Gutfreund H; Sykes BD
    Biochemistry; 1976 Apr; 15(7):1547-61. PubMed ID: 4092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-function relationships for some metalloalkaline phosphatases of E. coli.
    Lazdunski C; Petitclerc C; Lazdunski M
    Eur J Biochem; 1969 Apr; 8(4):510-7. PubMed ID: 4978714
    [No Abstract]   [Full Text] [Related]  

  • 11. Allosteric interactions between metal ion and phosphate at the active sites of alkaline phosphatase as determined by 31P NMR and 113Cd NMR.
    Chlebowski JF; Armitage IM; Coleman JE
    J Biol Chem; 1977 Oct; 252(20):7053-61. PubMed ID: 20443
    [No Abstract]   [Full Text] [Related]  

  • 12. On the mechanism of the Zn2+ and Co2+-alkaline phosphatase of E. coli. Number of sites and anticooperativity.
    Lazdunski C; Petitclerc C; Chappelet D; Lazdunski M
    Biochem Biophys Res Commun; 1969 Nov; 37(5):744-9. PubMed ID: 4900985
    [No Abstract]   [Full Text] [Related]  

  • 13. The functional properties of the Zn2(plus)-and Co2(plus)-alkaline phosphatases of Escherichia coli. Labelling of the active site with pyrophosphate, complex formation with arsenate, and reinvestigation of the role of the zinc atoms.
    Petitclerc C; Lazdunski C; Chappelet D; Moulin A; Lazdunski M
    Eur J Biochem; 1970 Jun; 14(2):301-8. PubMed ID: 4319099
    [No Abstract]   [Full Text] [Related]  

  • 14. 19-F NMR studies of the binding of a fluorine-labeled phosphonate ion to E. coli alkaline phosphatase.
    Lilja H; Csopak H; Lindman B; Fölsch G
    Biochim Biophys Acta; 1975 Mar; 384(1):277-82. PubMed ID: 236775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 35Cl nuclear magnetic resonance study of zinc and phosphate binding of E. coli alkaline phosphatase.
    Norne JE; Csopak H; Lindman B
    Arch Biochem Biophys; 1974 Jun; 162(2):552-9. PubMed ID: 4209891
    [No Abstract]   [Full Text] [Related]  

  • 16. Fluorotyrosine alkaline phosphatase. 19F nuclear magnetic resonance relaxation times and molecular motion of the individual fluorotyrosines.
    Hull WE; Sykes BD
    Biochemistry; 1974 Aug; 13(17):3431-7. PubMed ID: 4602295
    [No Abstract]   [Full Text] [Related]  

  • 17. A proton relaxation rate study of the copper analog of Escherichia coli alkaline phosphatase.
    Zukin RS; Hollis DP
    J Biol Chem; 1974 Jan; 249(2):656-8. PubMed ID: 4358560
    [No Abstract]   [Full Text] [Related]  

  • 18. The kinetics of the Escherichia coli alkaline phosphatase catalyzed hydrolysis of 2,4-dinitrophenyl phosphate.
    Ko SH; Kézdy FJ
    J Am Chem Soc; 1967 Dec; 89(26):7139-40. PubMed ID: 4863557
    [No Abstract]   [Full Text] [Related]  

  • 19. Conformational states of the subunit of Escherichia coli alkaline phosphatase.
    Reynolds JA; Schlesinger MJ
    Biochemistry; 1967 Nov; 6(11):3552-9. PubMed ID: 4864145
    [No Abstract]   [Full Text] [Related]  

  • 20. Escherichia coli alkaline phosphatase. Relaxation spectra of ligand binding.
    Halford SE
    Biochem J; 1972 Feb; 126(3):727-38. PubMed ID: 4561620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.