These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 4582903)

  • 1. Morphine action at central nervous system sites in rat: analgesia or hyperalgesia depending on site and dose.
    Jacquet YF; Lajtha A
    Science; 1973 Nov; 182(4111):490-2. PubMed ID: 4582903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patterns of unit responses to incremental doses of morphine in central gray, reticular formation, medial thalamus, caudate nucleus, hypothalamus, septum and hippocampus in unanesthetized rats.
    Dafny N; Brown M; Burks TF; Rigor BM
    Neuropharmacology; 1979 May; 18(5):489-95. PubMed ID: 460545
    [No Abstract]   [Full Text] [Related]  

  • 3. Dose effects of morphine on the spontaneous unit activity recorded from the thalamus, hypothalamus, septum, hippocampus, reticular formation, central gray, and caudate nucleus.
    Dafny N; Burks TF; Bergmann F
    J Neurosci Res; 1983; 9(2):115-26. PubMed ID: 6842623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphine analgesia: 2-way cross tolerance between systemic and intracerebral (periaqueductal gray) administrations.
    Jacquet YF; Lajtha A
    Life Sci; 1975 Oct; 17(8):1321-4. PubMed ID: 1196012
    [No Abstract]   [Full Text] [Related]  

  • 5. Prostaglandin hyperalgesia, V: a peripheral analgesic receptor for opiates.
    Ferreira SH; Molina N; Vettore O
    Prostaglandins; 1982 Jan; 23(1):53-60. PubMed ID: 6278540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The periaqueductal gray: site of morphine analgesia and tolerance as shown by 2-way cross tolerance between systemic and intracerebral injections.
    Jacquet YF; Lajtha A
    Brain Res; 1976 Feb; 103(3):501-13. PubMed ID: 1252940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paradoxical effects after microinjection of morphine in the periaqueductal gray matter in the rat.
    Jacquet YF; Lajtha A
    Science; 1974 Sep; 185(4156):1055-7. PubMed ID: 4604871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversal of morphine tolerance after medial thalamic lesions in the rat.
    Teitelbaum H; Catravas GN; McFarland WL
    Science; 1974 Aug; 185(4149):449-51. PubMed ID: 4858286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Opiate receptors and sleep. Effects of microinjections of morphine in the median thalamus and the periaqueductal gray matter of the rabbit (author's transl)].
    Tissot R
    Neuropsychobiology; 1980; 6(3):170-9. PubMed ID: 6246466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of morphine on sensory-evoked responses recorded from central gray, reticular formation, thalamus, hypothalamus, limbic system, basal ganglia, dorsal raphe, locus ceruleus, and pineal body.
    Dafny N; Marchand J; McClung R; Salamy J; Sands S; Wachtendorf H; Burks TF
    J Neurosci Res; 1980; 5(5):399-412. PubMed ID: 7441794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of antinociceptive action of morphine in the periaqueductal gray, medial and paramedial medulla in rat.
    Jensen TS; Yaksh TL
    Brain Res; 1986 Jan; 363(1):99-113. PubMed ID: 3004644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analgesia from the periaqueductal gray in the developing rat: focal injections of morphine or glutamate and effects of intrathecal injection of methysergide or phentolamine.
    Tive LA; Barr GA
    Brain Res; 1992 Jul; 584(1-2):92-109. PubMed ID: 1355395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurophysiological assessment of site specific effects of chronic morphine administration in freely behaving rats.
    McClung RE; Burks TF; Dafny N
    Arch Int Pharmacodyn Ther; 1977 Sep; 229(1):144-56. PubMed ID: 337915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic examination in the rat of brain sites sensitive to the direct application of morphine: observation of differential effects within the periaqueductal gray.
    Yaksh TL; Yeung JC; Rudy TA
    Brain Res; 1976 Sep; 114(1):83-103. PubMed ID: 963546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurophysiological evidence for tolerance and dependence on opiates: simultaneous multiunit recordings from septum, thalamus, and caudate nucleus.
    Dafny N
    J Neurosci Res; 1980; 5(4):339-49. PubMed ID: 7191906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BAM-18: analgesia, hyperalgesia and locomotor effects.
    Stevens KE; Leslie FM; Evans CJ; Belluzzi JD; Stein L
    Neuropeptides; 1988 Jul; 12(1):21-7. PubMed ID: 3419557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of brain lesions on the antinociceptive properties of morphine in rats.
    Yeung JC; Yaksh TL; Rudy TA
    Clin Exp Pharmacol Physiol; 1975; 2(3):261-8. PubMed ID: 1149330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reinforcing effects of brain microinjections of morphine revealed by conditioned place preference.
    van der Kooy D; Mucha RF; O'Shaughnessy M; Bucenieks P
    Brain Res; 1982 Jul; 243(1):107-17. PubMed ID: 7116146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphine hyperglycaemia.
    Feldberg W; Gupta KP
    J Physiol; 1974 May; 238(3):487-502. PubMed ID: 4853259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrathecal beta-funaltrexamine antagonizes intracerebroventricular beta-endorphin- but not morphine-induced analgesia in mice.
    Suh HH; Tseng LF
    J Pharmacol Exp Ther; 1988 May; 245(2):587-93. PubMed ID: 2966856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.