BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 4582949)

  • 21. Biogenesis of mitochondria. XLI. Physical mapping of mitochondrial genetic markers in yeast.
    Sriprakash KS; Molloy PL; Nagley P; Lukins HB; Linnane AW
    J Mol Biol; 1976 Jun; 104(2):485-503. PubMed ID: 781289
    [No Abstract]   [Full Text] [Related]  

  • 22. Studies on energy-linked reactions: isolation, characterisation and genetic analysis of trialkyl-tin-resistant mutants of Saccharomyces cerevisiae.
    Lancashire WE; Griffiths DE
    Eur J Biochem; 1975 Feb; 51(2):377-92. PubMed ID: 125200
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deletion mapping of mitochondrial transfer RNA genes in Saccharomyces cerevisiae by means of cytoplasmic petite mutants.
    Fukuhara H; Bolotin-Fukuhara M
    Mol Gen Genet; 1976 Apr; 145(1):7-17. PubMed ID: 775312
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physiological consequences of mitochondrial antibiotic-resistant mutations in Paramecium: growth-rates, cytochromic defects and cyanide-insensitive respiration of mutant and erythromycin-treated wild-type strains.
    Adoutte A; Doussiere J
    Mol Gen Genet; 1978 May; 161(2):121-34. PubMed ID: 209305
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pleiotropy of cytoplasmically and nuclearly inherited resistance to inhibitors of mitochondrial function in Saccharomyces cerevisiae.
    Rank GH
    Can J Microbiol; 1974 Jan; 20(1):9-12. PubMed ID: 4595738
    [No Abstract]   [Full Text] [Related]  

  • 26. The dependence of cytosole protein biosynthesis resistance to cycloheximide in yeast on changes in mitochondrial activity.
    Biliński T; Jachymczyk WJ; Kotylak Z
    Mol Gen Genet; 1974 Mar; 129(3):243-8. PubMed ID: 4601267
    [No Abstract]   [Full Text] [Related]  

  • 27. The origin of mutant cells: mechanisms by which Saccharomyces cerevisiae produces cells homoplasmic for new mitochondrial mutations.
    Backer JS; Birky CW
    Curr Genet; 1985; 9(8):627-40. PubMed ID: 3916732
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [New type of mitochondrial mutation in yeasts--temperature-dependent mitochondrial mutations resistant to antibiotics].
    Kal'dma IaA
    Genetika; 1975; 11(5):151-3. PubMed ID: 767200
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mitochondrial mutagenesis in Saccharomyces cerevisiae. I. Ultraviolet radiation.
    Ejchart A; Putrament A
    Mutat Res; 1979 Apr; 60(2):173-80. PubMed ID: 379626
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic analysis of unequal transmission of the mitochondrial markers in Saccharomyces cerevisiae.
    Gunge N
    Mol Gen Genet; 1975 Aug; 139(3):189-202. PubMed ID: 1102935
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel class of Saccharomyces cerevisiae mutants specifically UV-sensitive to "petite" induction.
    Moustacchi E; Perlman PS; Mahler HR
    Mol Gen Genet; 1976 Nov; 148(3):251-61. PubMed ID: 796662
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A single nucleotide substitution at the rib2 locus of the yeast mitochondrial gene for 21S rRNA confers resistance to erythromycin and cold-sensitive ribosome assembly.
    Cui Z; Mason TL
    Curr Genet; 1989 Oct; 16(4):273-9. PubMed ID: 2697468
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Erythromycin-inducible resistance in Staphylococcus aureus: requirements for induction.
    Weisblum B; Siddhikol C; Lai CJ; Demohn V
    J Bacteriol; 1971 Jun; 106(3):835-47. PubMed ID: 4397638
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mucidin resistance in yeast. Isolation, characterization and genetic analysis of nuclear and mitochondrial mucidin-resistant mutants of Saccharomyces cerevisiae.
    Subík J; Kovácová V; Takáscová G
    Eur J Biochem; 1977 Feb; 73(1):275-86. PubMed ID: 138589
    [TBL] [Abstract][Full Text] [Related]  

  • 35. "Killer" character does not influence the transmission of mitochondrial genes in Saccharomyces cerevisiae.
    Young RA; Perlman PS
    J Bacteriol; 1975 Oct; 124(1):290-5. PubMed ID: 1100604
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic evidence for "Darwinian" selection at the molecular level. 3. The effect of the suppressive factor on nuclearly and cytoplasmically inherited chloramphenicol resistance in S. cerevisiae.
    Rank GH; Bech-Hansen NT
    Can J Microbiol; 1972 Jan; 18(1):1-7. PubMed ID: 4551614
    [No Abstract]   [Full Text] [Related]  

  • 37. Recombination in 3-factor crosses of cytoplasmically inherited antibiotic-resistance mitochondrial markers in S. cerevisiae.
    Rank GH
    Heredity (Edinb); 1973 Jun; 30(3):265-71. PubMed ID: 4578958
    [No Abstract]   [Full Text] [Related]  

  • 38. Cytoplasmic inheritance in Saccharomyces cerevisiae: comparison of zygotic mitochondrial inheritance patterns.
    Aufderheide KJ; Johnson RG
    Mol Gen Genet; 1976 Mar; 144(3):289-99. PubMed ID: 775300
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Janus green resistance in Saccharomyces cerevisiae: interaction of nuclear and cytoplasmic factors.
    Kruszewska A; Szcześniak B
    Mol Gen Genet; 1978 Apr; 160(2):171-81. PubMed ID: 349352
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutants of Acanthamoeba castellanii resistant to erythromycin, chloramphenicol, and oligomycin.
    Seilhamer JJ; Byers TJ
    J Protozool; 1978 Nov; 25(4):486-9. PubMed ID: 739412
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.