These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 4583262)

  • 1. Pseudoverification. Hydrolysis of aminoacyl transfer ribonucleic acid catalyzed by an aminoacyl transfer ribonucleic acid synthetase in mixed solvents.
    Yarus M
    J Biol Chem; 1973 Oct; 248(19):6750-9. PubMed ID: 4583262
    [No Abstract]   [Full Text] [Related]  

  • 2. Pseudoverification of mixed aminoacyl transfer ribonucleic acids. The generality of the process.
    Yarus M
    J Biol Chem; 1973 Oct; 248(19):6755-8. PubMed ID: 4583263
    [No Abstract]   [Full Text] [Related]  

  • 3. Kinetics of homologous and heterologous aminoacylation with yeast phenylalanyl transfer ribonucleic acid synthetase.
    Roe B; Sirover M; Dudock B
    Biochemistry; 1973 Oct; 12(21):4146-54. PubMed ID: 4583318
    [No Abstract]   [Full Text] [Related]  

  • 4. Rapid deacylation by isoleucyl transfer ribonucleic acid synthetase of isoleucine-specific transfer ribonucleic acid aminoacylated with valine.
    Eldred EW; Schimmel PR
    J Biol Chem; 1972 May; 247(9):2961-4. PubMed ID: 4554364
    [No Abstract]   [Full Text] [Related]  

  • 5. The variety of intraspecific misacylations carried out by isoleucyl transfer ribonucleic acid synthetase of Escherichia coli.
    Yarus M; Mertes M
    J Biol Chem; 1973 Oct; 248(19):6744-9. PubMed ID: 4355506
    [No Abstract]   [Full Text] [Related]  

  • 6. Phenylalanyl-tRNA synthetase and isoleucyl-tRNA Phe : a possible verification mechanism for aminoacyl-tRNA.
    Yarus M
    Proc Natl Acad Sci U S A; 1972 Jul; 69(7):1915-9. PubMed ID: 4558664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of aminoacyl transfer ribonucleic acid formation stimulated by polyamines.
    Takeda Y; Matsuzaki K; Igarashi K
    J Bacteriol; 1972 Jul; 111(1):1-6. PubMed ID: 4591475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic acylation of oxidized-reduced transfer ribonucleic acid by Escherichia coli, yeast, and rat liver synthetases occurs almost exclusively at the 2'-hydroxyl.
    Ofengand J; Chládek S; Robilard G; Bierbaum J
    Biochemistry; 1974 Dec; 13(26):5425-32. PubMed ID: 4611487
    [No Abstract]   [Full Text] [Related]  

  • 9. Correction of aminoacylation errors: evidence for a non significant role of the aminoacyl-tRNA synthetase catalysed deacylation of aminoacyl-tRNAs.
    Bonnet J; Ebel JP
    FEBS Lett; 1974 Mar; 39(3):259-62. PubMed ID: 4604278
    [No Abstract]   [Full Text] [Related]  

  • 10. Divalent cations in transfer ribonucleic acid and aminoacyl transfer ribonucleic acid synthetase function and structure.
    Yarus M; Rashbaum S
    Biochemistry; 1972 May; 11(11):2043-9. PubMed ID: 4623834
    [No Abstract]   [Full Text] [Related]  

  • 11. Aminoacylation of Escherichia coli valine transfer RNA after oxidation and reduction.
    Uziel M; Jacobson KB
    Biochim Biophys Acta; 1974 Oct; 366(2):182-7. PubMed ID: 4376022
    [No Abstract]   [Full Text] [Related]  

  • 12. Behavior of chloramphenicol-induced phenylalanine transfer ribonucleic acid during recovery from chloramphenicol treatment in Escherichia coli.
    Mann MB; Huang PC
    Biochemistry; 1973 Dec; 12(26):5289-94. PubMed ID: 4586515
    [No Abstract]   [Full Text] [Related]  

  • 13. The effect of transfer ribonucleic acid on virally modified valyl transfer ribonucleic acid synthetase of Escherichia coli.
    Marchin GL; Müller UR; al-Khateeb GH
    J Biol Chem; 1974 Aug; 249(15):4705-11. PubMed ID: 4603076
    [No Abstract]   [Full Text] [Related]  

  • 14. Solvent and specificity. Binding and isoleucylation of phenylalanine transfer ribonucleic acid (Escherichia coli) by isoleucyl transfer ribonucleic acid synthetase from Escherichia coli.
    Yarus M
    Biochemistry; 1972 Jun; 11(12):2352-61. PubMed ID: 4337616
    [No Abstract]   [Full Text] [Related]  

  • 15. The plant aminoacyl-tRNA synthetases. Effect of sodium chloride on tRNA aminoacylation and aminoacyl-tRNA decomposition catalysed by aminoacyl-tRNA synthetases from yellow lupin seeds.
    Jakubowski H; Pawelkiewicz J
    Acta Biochim Pol; 1977; 24(2):163-70. PubMed ID: 195427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of the anticodon region of Escherichia coli tRNAGln and tRNAGlu in the specific interaction with cognate aminoacyl-tRNA synthetase. Alteration of the 2-thiouridine derivatives located in the anticodon of the tRNAs by BrCN or sulfur deprivation.
    Seno T; Agris PF; Söll D
    Biochim Biophys Acta; 1974 May; 349(3):328-38. PubMed ID: 4366808
    [No Abstract]   [Full Text] [Related]  

  • 17. Hydrolytic action of aminoacyl-tRNA synthetases from baker's yeast: "chemical proofreading" preventing acylation of tRNA(I1e) with misactivated valine.
    von der Haar F; Cramer F
    Biochemistry; 1976 Sep; 15(18):4131-8. PubMed ID: 786367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Initiator methionine transfer ribonucleic acid from wheat embryo. Purification, properties, and partial nucleotide sequences.
    Ghosh K; Ghosh HP; Simsek M; Raj Bhandary UL
    J Biol Chem; 1974 Aug; 249(15):4720-9. PubMed ID: 4367806
    [No Abstract]   [Full Text] [Related]  

  • 19. Transfer ribonucleic acid synthetase catalyzed deacylation of aminoacyl transfer ribonucleic acid in the absence of adenosine monophosphate and pyrophosphate.
    Schreier AA; Schimmel PR
    Biochemistry; 1972 Apr; 11(9):1582-9. PubMed ID: 4337554
    [No Abstract]   [Full Text] [Related]  

  • 20. Changes in levels of amino acid acceptors in tRNA from Escherichia coli grown under various conditions.
    Chase R; Tener GM; Gillam IC
    Arch Biochem Biophys; 1974 Jul; 163(1):306-17. PubMed ID: 4604202
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.