These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Effective conductivity of cell suspensions. Pavlin M; Slivnik T; Miklavcic D IEEE Trans Biomed Eng; 2002 Jan; 49(1):77-80. PubMed ID: 11794775 [TBL] [Abstract][Full Text] [Related]
23. Rotation of dielectrics in a rotating electric high-frequency field. Model experiments and theoretical explanation of the rotation effect of living cells. Fuhr G; Glaser R; Hagedorn R Biophys J; 1986 Feb; 49(2):395-402. PubMed ID: 3955177 [TBL] [Abstract][Full Text] [Related]
24. Liquid membranes as electrodes and biological models. Sandblom J; Orme F Membranes; 1972; 1():125-77. PubMed ID: 4668236 [No Abstract] [Full Text] [Related]
25. [New possibilities for the electrical impedance method of evaluating brain tissue status]. Vorob'ev MV; Vaĭnshteĭn GB Fiziol Zh SSSR Im I M Sechenova; 1989 Nov; 75(11):1630-4. PubMed ID: 2628020 [No Abstract] [Full Text] [Related]
26. A note of dipole sources in conducting biological tissues. Collin RE; Plonsey R Bull Math Biol; 1978; 40(2):201-9. PubMed ID: 638284 [No Abstract] [Full Text] [Related]
27. Characterizing cellular systems by means of dielectric spectroscopy. Gheorghiu E Bioelectromagnetics; 1996; 17(6):475-82. PubMed ID: 8986365 [TBL] [Abstract][Full Text] [Related]
28. Effects of electrode geometry and cell location on single-cell impedance measurement. Wang JW; Wang MH; Jang LS Biosens Bioelectron; 2010 Feb; 25(6):1271-6. PubMed ID: 19926465 [TBL] [Abstract][Full Text] [Related]
29. Current distribution in the brain from surface electrodes. Rush S; Driscoll DA Anesth Analg; 1968; 47(6):717-23. PubMed ID: 4972743 [No Abstract] [Full Text] [Related]
31. Electrophysiological model of intact and processed plant tissues: cell disintegration criteria. Angersbach A; Heinz V; Knorr D Biotechnol Prog; 1999; 15(4):753-62. PubMed ID: 10441367 [TBL] [Abstract][Full Text] [Related]
32. Electric potential in three-dimensional electrically syncytial tissues. Peskoff A Bull Math Biol; 1979; 41(2):163-81. PubMed ID: 760880 [No Abstract] [Full Text] [Related]
33. The transient subthreshold response of spherical and cylindrical cell models to extracellular stimulation. Cartee LA; Plonsey R IEEE Trans Biomed Eng; 1992 Jan; 39(1):76-85. PubMed ID: 1572684 [TBL] [Abstract][Full Text] [Related]
34. Potential distribution for a spheroidal cell having a conductive membrane in an electric field. Jerry RA; Popel AS; Brownell WE IEEE Trans Biomed Eng; 1996 Sep; 43(9):970-2. PubMed ID: 9214813 [TBL] [Abstract][Full Text] [Related]
35. The "patch clamp" reveals the workings of small cells. Dwyer TM; Farley JM Prog Clin Biol Res; 1983; 126():233-44. PubMed ID: 6889389 [No Abstract] [Full Text] [Related]
36. Finite element modeling of electrode-skin contact impedance in electrical impedance tomography. Hua P; Woo EJ; Webster JG; Tompkins WJ IEEE Trans Biomed Eng; 1993 Apr; 40(4):335-43. PubMed ID: 8375870 [TBL] [Abstract][Full Text] [Related]
37. Modelling corneal epithelial wound closure in the presence of physiological electric fields via a moving boundary formalism. Gaffney EA; Maini PK; McCaig CD; Zhao M; Forrester JV IMA J Math Appl Med Biol; 1999 Dec; 16(4):369-93. PubMed ID: 10669895 [TBL] [Abstract][Full Text] [Related]
38. Comments on "Line patterns in the mosaic electric properties of human skin--a cross-correlation study". Lin YD; Chen BC; Hsu SF; Lin JG IEEE Trans Biomed Eng; 2002 Mar; 49(3):274. PubMed ID: 11876293 [No Abstract] [Full Text] [Related]
39. Direct mapping of bioelectric activity. Smith WM Crit Rev Biomed Eng; 1999; 27(3-5):339-58. PubMed ID: 10864283 [TBL] [Abstract][Full Text] [Related]
40. On the dielectric relaxation of biological cell suspensions: the effect of the membrane electrical conductivity. Di Biasio A; Cametti C Colloids Surf B Biointerfaces; 2011 Jun; 84(2):433-41. PubMed ID: 21334862 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]