These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
335 related articles for article (PubMed ID: 4584137)
1. A study of the thermal stability of ribosomes and biologically active subribosomal particles. Cox RA; Pratt H; Huvos P; Higginson B; Hirst W Biochem J; 1973 Jul; 134(3):775-93. PubMed ID: 4584137 [TBL] [Abstract][Full Text] [Related]
2. The effect of pancreatic ribonuclease on rabbit reticulocyte ribosomes and its interpretation in terms of ribosome structure. Cox RA Biochem J; 1969 Oct; 114(4):753-67. PubMed ID: 4981034 [TBL] [Abstract][Full Text] [Related]
3. Secondary structure features of ribosomal RNA species within intact ribosomal subunits and efficiency of RNA-protein interactions in thermoacidophilic (Caldariella acidophila, Bacillus acidocaldarius) and mesophilic (Escherichia coli) bacteria. Cammarano P; Mazzei F; Londei P; Teichner A; de Rosa M; Gambacorta A Biochim Biophys Acta; 1983 Aug; 740(3):300-12. PubMed ID: 6347258 [TBL] [Abstract][Full Text] [Related]
4. A study of the influence of magnesium ions on the conformation of ribosomal ribonucleic acid and on the stability of the larger subribosomal particle of rabbit reticulocytes. Cox RA; Hirst W Biochem J; 1976 Dec; 160(3):505-19. PubMed ID: 797388 [TBL] [Abstract][Full Text] [Related]
5. Re-activation of the peptidyltransferase centre of rabbit reticulocyte ribosomes after inactivation by exposure to low concentrations of magnesium ion. Cox RA; Greenwell P; Hirst W Biochem J; 1976 Dec; 160(3):521-31. PubMed ID: 1016237 [TBL] [Abstract][Full Text] [Related]
6. Stability of ribosomes and ribosomal ribonucleic acid from Bacillus stearothermophilus. Friedman SM; Axel R; Weinstein IB J Bacteriol; 1967 May; 93(5):1521-6. PubMed ID: 6025440 [TBL] [Abstract][Full Text] [Related]
7. The role of ribosomal ribonucleic acid in the structure and function of mammalian brain ribosomes. Grove BK; Johnson TC Biochem J; 1974 Nov; 143(2):419-26. PubMed ID: 4462559 [TBL] [Abstract][Full Text] [Related]
8. RNA--protein interactions in ribosomes. 1. Thermal denaturation of RNA in ribosomes. Shatskii IN; Chichkova NV; Bogdanov AA Mol Biol; 1971; 5(1):120-5. PubMed ID: 4949467 [No Abstract] [Full Text] [Related]
9. Studies on the role of polyamines associated with the ribosomes from Bacillus stearothermophilus. Stevens L; Morrison MR Biochem J; 1968 Jul; 108(4):633-40. PubMed ID: 4875413 [TBL] [Abstract][Full Text] [Related]
10. Structure and function of Escherichia coli ribosomes. I. Partial fractionation of the functionally active ribosomal proteins and reconstitution of artificial subribosomal particles. Traub P; Nomura M J Mol Biol; 1968 Jun; 34(3):575-93. PubMed ID: 4938558 [No Abstract] [Full Text] [Related]
11. Studies on the negative circular dichroic bands around 297 nm of ribosomes from bacterial cells. Uchiumi T; Hachimori A; Takeda A; Samejima T Biochim Biophys Acta; 1978 Jul; 519(2):513-25. PubMed ID: 96858 [TBL] [Abstract][Full Text] [Related]
12. A study of the hydrolysis of unfractionated reticulocyte ribosomal ribonucleic acid by pancreatic ribonuclease and its relevance to secondary structure. Cox RA; Kanagalingam K Biochem J; 1967 May; 103(2):431-52. PubMed ID: 4962083 [TBL] [Abstract][Full Text] [Related]
13. The role of magnesium and potassium ions in the molecular mechanism of ribosome assembly: hydrodynamic, conformational, and thermal stability studies of 16 S RNA from Escherichia coli ribosomes. Allen SH; Wong KP Arch Biochem Biophys; 1986 Aug; 249(1):137-47. PubMed ID: 3527066 [TBL] [Abstract][Full Text] [Related]
14. Reassembly of the peptidyltransferase centre of larger subparticles of rabbit reticulocyte ribosomes from a core-particle and split-protein fraction. Cox RA; Greenwell P Biochem J; 1976 Dec; 160(3):533-46. PubMed ID: 1016238 [TBL] [Abstract][Full Text] [Related]
15. Stability and homogeneity of preparations of ribosomal particles from Escherichia coli. Littlechild J; Spencer M Biochemistry; 1973 Jul; 12(16):3102-8. PubMed ID: 4581146 [No Abstract] [Full Text] [Related]
16. The secondary structure of E. coli ribosomes and ribosomal RNA's: a spectrophotometric approach. Araco A; Belli M; Giorgi C; Onori G Nucleic Acids Res; 1975 Mar; 2(3):373-81. PubMed ID: 1093140 [TBL] [Abstract][Full Text] [Related]
18. A comparison of the unfolding and dissociation of the large ribosome subunits from Rhodopseudomonas spheroides N.C.I.B. 8253 and Escherichia coli M.R.E. 600. Robinson A; Sykes J Biochem J; 1973 Aug; 133(4):739-47. PubMed ID: 4201305 [TBL] [Abstract][Full Text] [Related]
19. Differential stability of E. coli ribosomal particles and free RNA towards thermal degradation studied by microcalorimetry. Bonincontro A; Cinelli S; Mengoni M; Onori G; Risuleo G; Santucci A Biophys Chem; 1998 Nov; 75(2):97-103. PubMed ID: 9857479 [TBL] [Abstract][Full Text] [Related]
20. Structure and function of Escherichia coli ribosomes. 3. Stoichiometry and rate of the reconstitution of ribosomes from subribosomal particles and split proteins. Nomura M; Traub P J Mol Biol; 1968 Jun; 34(3):609-19. PubMed ID: 4938560 [No Abstract] [Full Text] [Related] [Next] [New Search]