These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 4584138)

  • 21. Uphill transport of monosaccharides in Candida beverwijkii.
    Deák T; Kotyk A
    Folia Microbiol (Praha); 1968; 13(3):205-11. PubMed ID: 5672581
    [No Abstract]   [Full Text] [Related]  

  • 22. [Regulation of monosaccharide and carboxylic acid metabolism in Rhodotorula gracilis].
    Höfer M; Becker JU
    Zentralbl Bakteriol Orig A; 1972 May; 220(1):374-9. PubMed ID: 4145603
    [No Abstract]   [Full Text] [Related]  

  • 23. Nonelectrolyte diffusion through lecithin-water lamellar phases and red-cell membranes.
    Lange Y; Bobo CM; Solomon AK
    Biochim Biophys Acta; 1974 Mar; 339(3):347-58. PubMed ID: 4858059
    [No Abstract]   [Full Text] [Related]  

  • 24. Transport and metabolic effects of alpha-aminoisobutyric acid in Saccharomyces cerevisiae.
    Kim KW; Roon RJ
    Biochim Biophys Acta; 1982 Nov; 719(2):356-62. PubMed ID: 6758863
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transport of -aminoisobutyric acid in rabbit detrusor muscle. I. General characteristics of the uptake in vitro.
    Osman FH; Paton DM
    Biochim Biophys Acta; 1971 Jun; 233(3):666-75. PubMed ID: 5113924
    [No Abstract]   [Full Text] [Related]  

  • 26. Characterization of cytosine permeation in Saccharomyces cerevisiae.
    Chevallier MR; Jund R; Lacroute F
    J Bacteriol; 1975 May; 122(2):629-41. PubMed ID: 47858
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A kinetic analysis of D-xylose transport in Rhodotorula glutinis.
    Alcorn ME; Griffin CC
    Biochim Biophys Acta; 1978 Jul; 510(2):361-71. PubMed ID: 566557
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The efficiency of energetic couping between Na+ flow and amino acid transport in Ehrlich cells-a revised assessment.
    Heinz E; Geck P
    Biochim Biophys Acta; 1974 Mar; 339(3):426-31. PubMed ID: 4834677
    [No Abstract]   [Full Text] [Related]  

  • 29. Control of xylose consumption by xylose transport in recombinant Saccharomyces cerevisiae.
    Gárdonyi M; Jeppsson M; Lidén G; Gorwa-Grauslund MF; Hahn-Hägerdal B
    Biotechnol Bioeng; 2003 Jun; 82(7):818-24. PubMed ID: 12701148
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nutrition and metabolism of marine bacteria. XVII. Ion-dependent retention of alpha-aminoisobutyric acid and its relation to Na+ dependent transport in a marine pseudomonad.
    Wong PT; Thompson J; MacLeod RA
    J Biol Chem; 1969 Feb; 244(3):1016-25. PubMed ID: 5769176
    [No Abstract]   [Full Text] [Related]  

  • 31. Increased rates of sugar transport in Saccharomyces cerevisiae. A result of sugar metabolism.
    Spoerl E; Williams JP; Benedict SH
    Biochim Biophys Acta; 1973 Apr; 298(4):956-66. PubMed ID: 4580981
    [No Abstract]   [Full Text] [Related]  

  • 32. The mechanism of the permeation of cells by non-electrolytes.
    Fisher RB; Nimmo IA
    Q J Exp Physiol Cogn Med Sci; 1972 Apr; 57(2):162-75. PubMed ID: 4482071
    [No Abstract]   [Full Text] [Related]  

  • 33. Ureidosuccinic acid permeation in Saccharomyces cerevisiae.
    Greth ML; Chevallier MR; Lacroute F
    Biochim Biophys Acta; 1977 Feb; 465(1):138-51. PubMed ID: 13831
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transport of nutrients in yeast protoplasts.
    Kotyk A
    Experientia Suppl; 1983; 46():209-12. PubMed ID: 6370717
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High capacity xylose transport in Candida intermedia PYCC 4715.
    Gárdonyi M; Osterberg M; Rodrigues C; Spencer-Martins I; Hahn-Hägerdal B
    FEMS Yeast Res; 2003 Mar; 3(1):45-52. PubMed ID: 12702245
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sugar consumption and ethanol fermentation by transporter-overexpressed xylose-metabolizing Saccharomyces cerevisiae harboring a xyloseisomerase pathway.
    Tanino T; Ito T; Ogino C; Ohmura N; Ohshima T; Kondo A
    J Biosci Bioeng; 2012 Aug; 114(2):209-11. PubMed ID: 22591844
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deuterons cannot replace protons in active transport processes in yeast.
    Kotyk A; Dvoráková M; Koryta J
    FEBS Lett; 1990 May; 264(2):203-5. PubMed ID: 2162783
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An assay for functional xylose transporters in Saccharomyces cerevisiae.
    Wang C; Shen Y; Hou J; Suo F; Bao X
    Anal Biochem; 2013 Nov; 442(2):241-8. PubMed ID: 23928049
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Uphill transport of sugars in the yeast Rhodotorula gracilis.
    Kotyk A; Höfer M
    Biochim Biophys Acta; 1965 Jul; 102(2):410-22. PubMed ID: 5892434
    [No Abstract]   [Full Text] [Related]  

  • 40. Novel transporters from Kluyveromyces marxianus and Pichia guilliermondii expressed in Saccharomyces cerevisiae enable growth on L-arabinose and D-xylose.
    Knoshaug EP; Vidgren V; Magalhães F; Jarvis EE; Franden MA; Zhang M; Singh A
    Yeast; 2015 Oct; 32(10):615-28. PubMed ID: 26129747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.