These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 4584577)

  • 21. Retention of mercury in tissues of cattle and sheep given oral doses of a mercurial fungicide, Ceresan M.
    Wright FC; Palmer JS; Riner JC
    J Agric Food Chem; 1973; 21(4):614-5. PubMed ID: 4718931
    [No Abstract]   [Full Text] [Related]  

  • 22. Mercury and methylmercury content of agricultural crops grown on soils treated with varius mercury compounds.
    Bache CA; Gutenmann WH; St John LE; Sweet RD; Hatfield HH; Lisk DJ
    J Agric Food Chem; 1973; 21(4):607-13. PubMed ID: 4718930
    [No Abstract]   [Full Text] [Related]  

  • 23. Microbial degradation of synthetic organochlorine compounds.
    Motosugi K; Soda K
    Experientia; 1983 Nov; 39(11):1214-20. PubMed ID: 6416886
    [No Abstract]   [Full Text] [Related]  

  • 24. Volatilization of mercury compounds and utilization of various aromatic compounds by a broad-spectrum mercury resistant Bacillus pasteurii strain.
    Pahan K; Ray S; Gachhui R; Chaudhuri J; Mandal A
    Bull Environ Contam Toxicol; 1991 Apr; 46(4):591-8. PubMed ID: 1855005
    [No Abstract]   [Full Text] [Related]  

  • 25. Characterization of a marine-isolated mercury-resistant Pseudomonas putida strain SP1 and its potential application in marine mercury reduction.
    Zhang W; Chen L; Liu D
    Appl Microbiol Biotechnol; 2012 Feb; 93(3):1305-14. PubMed ID: 21751007
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of salinity gradients and heterotrophic microbial activity on biodegradation of nitrilotriacetic acid in laboratory simulations of the estuarine environment.
    Hunter M; Stephenson T; Kirk PW; Perry R; Lester JN
    Appl Environ Microbiol; 1986 May; 51(5):919-25. PubMed ID: 3089148
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mergamma DB and phenylmercuric acetate: their effect on the reproduction of Japanese quail (Coturnix coturnix japonica Temminck and Schlegel).
    Dwernychuk LW; Sheppard DH; Haley LE
    Can J Zool; 1974 Feb; 52(2):291-300. PubMed ID: 4131727
    [No Abstract]   [Full Text] [Related]  

  • 28. Mercury and organomercurial resistances determined by plasmids in Pseudomonas.
    Clark DL; Weiss AA; Silver S
    J Bacteriol; 1977 Oct; 132(1):186-96. PubMed ID: 410779
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mercury resistance in a plasmid-bearing strain of Escherichia coli.
    Summers AO; Silver S
    J Bacteriol; 1972 Dec; 112(3):1228-36. PubMed ID: 4565536
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Studies on pectolytic bacteria in water and bottom sediments of two lakes of different trophy.
    Donderski W
    Acta Microbiol Pol; 1982; 31(3-4):293-9. PubMed ID: 6189379
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of clay minerals on microorganisms. I. Montmorillonite and kaolinite on bacteria.
    Stotzky G; Rem LT
    Can J Microbiol; 1966 Jun; 12(3):547-63. PubMed ID: 4289932
    [No Abstract]   [Full Text] [Related]  

  • 32. Bioremediation of toxic substances by mercury resistant marine bacteria.
    De J; Sarkar A; Ramaiah N
    Ecotoxicology; 2006 May; 15(4):385-9. PubMed ID: 16673165
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanism of mercuric chloride resistance in microorganisms. I. Vaporization of a mercury compound from mercuric chloride by multiple drug resistant strains of Escherichia coli.
    Komura I; Izaki K
    J Biochem; 1971 Dec; 70(6):885-93. PubMed ID: 4947308
    [No Abstract]   [Full Text] [Related]  

  • 34. Substrate interactions of benzene, toluene, and para-xylene during microbial degradation by pure cultures and mixed culture aquifer slurries.
    Alvarez PJ; Vogel TM
    Appl Environ Microbiol; 1991 Oct; 57(10):2981-5. PubMed ID: 1746958
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Environmental significance of the potential for mer(Tn21)-mediated reduction of Hg2+ to Hg0 in natural waters.
    Barkay T; Liebert C; Gillman M
    Appl Environ Microbiol; 1989 May; 55(5):1196-202. PubMed ID: 2547336
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accumulation of mercury in tissues of cattle, sheep, and chickens given the mercurial fungicide, Panogen 15, orally.
    Wright FC; Palmer JS; Riner JC
    J Agric Food Chem; 1973; 21(3):414-6. PubMed ID: 4708806
    [No Abstract]   [Full Text] [Related]  

  • 37. Tolerance to various toxicants by marine bacteria highly resistant to mercury.
    De J; Ramaiah N; Mesquita A; Verlekar XN
    Mar Biotechnol (NY); 2003; 5(2):185-93. PubMed ID: 12876655
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Elimination of mercury and organomercurials by nitrogen-fixing bacteria.
    Ghosh S; Sadhukhan PC; Ghosh DK; Chaudhuri J; Mandal A
    Bull Environ Contam Toxicol; 1997 Jun; 58(6):993-8. PubMed ID: 9136665
    [No Abstract]   [Full Text] [Related]  

  • 39. [A model study of pesticide biodegradation in soil].
    Bieganska J
    Izv Akad Nauk Ser Biol; 2007; (1):91-101. PubMed ID: 17352205
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inactivating effects of micro-organisms on insecticidal activity of Dursban.
    Hirakoso S
    Jpn J Exp Med; 1969 Feb; 39(1):17-20. PubMed ID: 5307966
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.