BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 458473)

  • 1. Formation of a supplemental long time-constant reservoir of high energy phosphate by brain in vivo and in vitro and its reversible depletion by potassium depolarization.
    Woznicki DT; Walker JB
    J Neurochem; 1979 Jul; 33(1):75-80. PubMed ID: 458473
    [No Abstract]   [Full Text] [Related]  

  • 2. Inhibition of creatine and phosphocreatine accumulation in skeletal muscle and heart.
    Fitch CD; Chevli R
    Metabolism; 1980 Jul; 29(7):686-90. PubMed ID: 7382831
    [No Abstract]   [Full Text] [Related]  

  • 3. In vivo brain phosphocreatine and ATP regulation in mice fed a creatine analog.
    Holtzman D; Meyers R; O'Gorman E; Khait I; Wallimann T; Allred E; Jensen F
    Am J Physiol; 1997 May; 272(5 Pt 1):C1567-77. PubMed ID: 9176148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation and utilization of novel high energy phosphate reservoirs in Ehrlich ascites tumor cells. Cyclocreatine-3-P and creatine-P.
    Annesley TM; Walker JB
    J Biol Chem; 1978 Nov; 253(22):8120-5. PubMed ID: 568626
    [No Abstract]   [Full Text] [Related]  

  • 5. Cyclocreatine phosphate as a substitute for creatine phosphate in vertebrate tissues. Energistic considerations.
    Annesley TM; Walker JB
    Biochem Biophys Res Commun; 1977 Jan; 74(1):185-90. PubMed ID: 836276
    [No Abstract]   [Full Text] [Related]  

  • 6. Synthesis and accumulation of an extremely stable high-energy phosphate compound by muscle, heart, and brain of animals fed the creatine analog, 1-carboxyethyl-2-iminoimidazolidine (homocyclocreatine).
    Roberts JJ; Walker JB
    Arch Biochem Biophys; 1983 Feb; 220(2):563-71. PubMed ID: 6824340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilization of cyclocreatine phosphate, and analogue of creatine phosphate, by mouse brain during ischemia and its sparing action on brain energy reserves.
    Woznicki DT; Walker JB
    J Neurochem; 1980 May; 34(5):1247-53. PubMed ID: 7373304
    [No Abstract]   [Full Text] [Related]  

  • 8. Accumulation of analgo of phosphocreatine in muscle of chicks fed 1-carboxymethyl-2-iminoimidazolidine (cyclocreatine).
    Griffiths GR; Walker JB
    J Biol Chem; 1976 Apr; 251(7):2049-54. PubMed ID: 1270421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Creatine and phosphocreatine analogs: anticancer activity and enzymatic analysis.
    Bergnes G; Yuan W; Khandekar VS; O'Keefe MM; Martin KJ; Teicher BA; Kaddurah-Daouk R
    Oncol Res; 1996; 8(3):121-30. PubMed ID: 8823808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conversion of dietary N-Ethylguanidinoacetate by Ehrlich ascites tumor cells and animal tissues to a functionally active analog of creatine phosphate.
    Roberts JJ; Walker JB
    Arch Biochem Biophys; 1982 May; 215(2):564-70. PubMed ID: 7092241
    [No Abstract]   [Full Text] [Related]  

  • 11. Progressive decrease of phosphocreatine, creatine and creatine kinase in skeletal muscle upon transformation to sarcoma.
    Patra S; Bera S; SinhaRoy S; Ghoshal S; Ray S; Basu A; Schlattner U; Wallimann T; Ray M
    FEBS J; 2008 Jun; 275(12):3236-47. PubMed ID: 18485002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Role of creatine kinase and its substrates in the central nervous system in norm and in various pathologies].
    Nersesova LS
    Zh Evol Biokhim Fiziol; 2011; 47(2):120-7. PubMed ID: 21598696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of energy flux through the creatine kinase reaction in vitro and in perfused rat heart. 31P-NMR studies.
    Kupriyanov VV; Ya Steinschneider A; Ruuge EK; Kapel'ko VI; Yu Zueva M; Lakomkin VL; Smirnov VN; Saks VA
    Biochim Biophys Acta; 1984 Dec; 805(4):319-31. PubMed ID: 6509089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Occurrence of free creatine, phosphocreatine and creatine phosphokinase in adipose tissue.
    Berlet HH; Bonsmann I; Birringer H
    Biochim Biophys Acta; 1976 Jun; 437(1):166-74. PubMed ID: 949504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphate metabolism in the electric organ.
    Cheng SC; Keynes RD
    Biochim Biophys Acta; 1967 Jul; 143(1):249-56. PubMed ID: 4292785
    [No Abstract]   [Full Text] [Related]  

  • 16. A possible role of the creatine phosphate-creatine pool in the regulation of the adenylate pool.
    Pezzini A; Conte A; Galbani P; Ronca-Testoni S
    Int J Tissue React; 1988; 10(2):107-10. PubMed ID: 3182186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of creatine phosphate from creatine and 32P-labelled ATP by isolated rabbit heart mitochondria.
    Yang WC; Geiger PJ; Besman SP
    Biochem Biophys Res Commun; 1977 Jun; 76(3):882-7. PubMed ID: 901451
    [No Abstract]   [Full Text] [Related]  

  • 18. Maturational changes in rabbit brain phosphocreatine and creatine kinase.
    Kekelidze T; Khait I; Togliatti A; Benzycry J; Mulkern R; Holtzman D
    Ann N Y Acad Sci; 1999; 893():309-13. PubMed ID: 10672256
    [No Abstract]   [Full Text] [Related]  

  • 19. 31P-saturation-transfer nuclear-magnetic-resonance measurements of phosphocreatine turnover in guinea-pig brain slices.
    Morris PG; Feeney J; Cox DW; Bachelard HS
    Biochem J; 1985 May; 227(3):777-82. PubMed ID: 4004799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The creatine-creatine phosphate shuttle for energy transport-compartmentation of creatine phosphokinase in muscle.
    Erickson-Viitanen S; Geiger P; Yang WC; Bessman SP
    Adv Exp Med Biol; 1982; 151():115-25. PubMed ID: 6217725
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.