These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 458501)

  • 1. Conversion of alanine, aspartate and lactate to glucose and CO2 in liver from stress-susceptible and stress-resistant pigs.
    Darrah PS; DiMarco NM; Beitz DC; Topel DG
    J Nutr; 1979 Aug; 109(8):1464-8. PubMed ID: 458501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gluconeogenesis from lactate in liver of stress-susceptible and stress-resistant pigs.
    Dimarco NM; Beitz DC; Young JW; Topel DG; Christian LL
    J Nutr; 1976 May; 106(5):710-6. PubMed ID: 1262979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blood lactate kinetics in normal and stress-susceptible pigs.
    Darrah PS; Beitz DC; Topel DG; Christian LL
    J Anim Sci; 1981 Oct; 53(4):1000-5. PubMed ID: 7319957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of some muscle metabolites in stress susceptible and resistant Landrace gilts after halothane exposure or exercise stress.
    Heinze PH; Mitchell G
    Meat Sci; 1991; 30(4):337-49. PubMed ID: 22059404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced gluconeogenesis from lactate in perfused livers after endurance training.
    Sumida KD; Urdiales JH; Donovan CM
    J Appl Physiol (1985); 1993 Feb; 74(2):782-7. PubMed ID: 8458796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate utilization for hepatic gluconeogenesis is altered by increased glucose demand in ruminants.
    Overton TR; Drackley JK; Ottemann-Abbamonte CJ; Beaulieu AD; Emmert LS; Clark JH
    J Anim Sci; 1999 Jul; 77(7):1940-51. PubMed ID: 10438042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of increased gluconeogenesis in noninsulin-dependent diabetes mellitus. Role of alterations in systemic, hepatic, and muscle lactate and alanine metabolism.
    Consoli A; Nurjhan N; Reilly JJ; Bier DM; Gerich JE
    J Clin Invest; 1990 Dec; 86(6):2038-45. PubMed ID: 2254458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of alanine on malate-aspartate shuttle in perfused livers from cold-exposed rats.
    Sugano T; Ohta T; Tarui A; Miyamae Y
    Am J Physiol; 1986 Oct; 251(4 Pt 1):E385-92. PubMed ID: 3766724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liver metabolism and glucogenesis in trauma and sepsis.
    Imamura M; Clowes GH; Blackburn GL; O'Donnell TF; Trerice M; Bhimjee Y; Ryan NT
    Surgery; 1975 Jun; 77(6):868-80. PubMed ID: 1145447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of liver and skeletal muscle to alanine and lactate metabolism in humans.
    Consoli A; Nurjhan N; Reilly JJ; Bier DM; Gerich JE
    Am J Physiol; 1990 Nov; 259(5 Pt 1):E677-84. PubMed ID: 2240206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycerol and lactate induce reciprocal changes in glucose formation and glutamine production in isolated rabbit kidney-cortex tubules incubated with aspartate.
    Lietz T; Bryła J
    Arch Biochem Biophys; 1995 Aug; 321(2):501-9. PubMed ID: 7646077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of quinolinic acid and glucagon on gluconeogenesis in the perfused rat liver.
    de Sagarra MR; Hochuli R; Piquerez R; Anabitarte M; Walter P
    Rev Esp Fisiol; 1978 Jun; 34(2):177-86. PubMed ID: 694206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose-alanine relationship in normal human pregnancy.
    Kalhan SC; Gilfillan CA; Tserng KY; Savin SM
    Metabolism; 1988 Feb; 37(2):152-8. PubMed ID: 3123875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactate metabolism by cardiac muscle and liver from Pietrain and Minnesota No. 1 pigs and their reciprocal crosses.
    Aberle ED; Addis PB; Rempel WE
    J Anim Sci; 1976 Dec; 43(6):1211-7. PubMed ID: 1002623
    [No Abstract]   [Full Text] [Related]  

  • 15. Glucose production in the newborn dog. II. Evaluation of autonomic and enzymatic control in the isolated perfused canine liver.
    Chilebowski RT; Adam PA
    Pediatr Res; 1975 Nov; 9(11):821-8. PubMed ID: 171617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of gluconeogenesis during rest and exercise in the depancreatized dog.
    Wasserman DH; Johnson JL; Bupp JL; Lacy DB; Bracy DP
    Am J Physiol; 1993 Jul; 265(1 Pt 1):E51-60. PubMed ID: 8338154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of diet on glucose turnover and rates of gluconeogenesis, oxidation and turnover of D-(-)-lactate in the bovine.
    Harmon DL; Britton RA; Prior RL
    J Nutr; 1983 Sep; 113(9):1842-50. PubMed ID: 6411877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired lactate utilization in livers of rats fed high protein-diets.
    Rémésy C; Demigné C
    J Nutr; 1982 Jan; 112(1):60-9. PubMed ID: 7054470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of glucagon on hepatic lactate metabolism in the conscious dog.
    Davis MA; Williams PE; Cherrington AD
    Am J Physiol; 1985 Apr; 248(4 Pt 1):E463-70. PubMed ID: 2858980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of effect of insulin on hepatic metabolites, gluconeogenesis, and ketogenesis.
    McDaniel HG
    Am J Physiol; 1977 Jul; 233(1):E13-8. PubMed ID: 879314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.