These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 458504)

  • 1. Chromatic border distinctness: not an index of hue or saturation differences.
    Tansley BW; Valberg A
    J Opt Soc Am; 1979 Jan; 69(1):113-8. PubMed ID: 458504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A line, not a space, represents visual distinctness of borders formed by different colors.
    Tansley BW; Boynton RM
    Science; 1976 Mar; 191(4230):954-7. PubMed ID: 1082644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blue cones contribute to border distinctness.
    Boynton RM; Eskew RT; Olson CX
    Vision Res; 1985; 25(9):1349-52. PubMed ID: 4072017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visibility of borders: separate and combined effects of color differences, luminance contrast, and luminance level.
    Frome FS; Buck SL; Boynton RM
    J Opt Soc Am; 1981 Feb; 71(2):145-50. PubMed ID: 7277058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tritanopic purity-difference function to describe the properties of minimally distinct borders.
    Valberg A; Tansley BW
    J Opt Soc Am; 1977 Oct; 67(10):1330-6. PubMed ID: 915574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colour changes as a function of luminance contrast.
    Valberg A; Lange-Malecki B; Seim T
    Perception; 1991; 20(5):655-68. PubMed ID: 1806907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction between short- and longer-wavelength cones in hue cancellation codes: nonlinearities of hue cancellation as a function of stimulus intensity.
    Ejima Y; Takahashi S
    Vision Res; 1985; 25(12):1911-22. PubMed ID: 3832617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatic two-pulse resolution with and without luminance transients.
    Bowen RW; Lindsey DT; Smith VC
    J Opt Soc Am; 1977 Nov; 67(11):1501-7. PubMed ID: 925773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vector model for normal and dichromatic color vision.
    Guth SL; Massof RW; Benzschawel T
    J Opt Soc Am; 1980 Feb; 70(2):197-212. PubMed ID: 7365563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker.
    Lee BB; Martin PR; Valberg A
    J Physiol; 1989 Jul; 414():223-43. PubMed ID: 2607430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Color perception under chromatic adaptation: red/green equilibria with adapted short-wavelength-sensitive cones.
    Shevell SK; Humanski RA
    Vision Res; 1988; 28(12):1345-56. PubMed ID: 3256152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatic suppression of cone inputs to the luminance flicker mechanism.
    Stromeyer CF; Cole GR; Kronauer RE
    Vision Res; 1987; 27(7):1113-37. PubMed ID: 3660665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectral properties of short-wavelength (blue) cones in the turtle retina.
    Itzhaki A; Malik S; Perlman I
    Vis Neurosci; 1992; 9(3-4):235-41. PubMed ID: 1390383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Responses of macaque ganglion cells to movement of chromatic borders.
    Valberg A; Lee BB; Kaiser PK; Kremers J
    J Physiol; 1992 Dec; 458():579-602. PubMed ID: 1302280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What happens if it changes color when it moves?: psychophysical experiments on the nature of chromatic input to motion detectors.
    Dobkins KR; Albright TD
    Vision Res; 1993 May; 33(8):1019-36. PubMed ID: 8506643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Achromatic parvocellular contrast gain in normal and color defective observers: Implications for the evolution of color vision.
    Lutze M; Pokorny J; Smith VC
    Vis Neurosci; 2006; 23(3-4):611-6. PubMed ID: 16962004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatic border perception: the role of red- and green-sensitive cones.
    Tansley BW; Boynton RM
    Vision Res; 1978; 18(6):683-97. PubMed ID: 664355
    [No Abstract]   [Full Text] [Related]  

  • 18. Threshold temporal integration of chromatic stimuli.
    Smith VC; Bowen RW; Pokorny J
    Vision Res; 1984; 24(7):653-60. PubMed ID: 6464359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in perceived color due to chromatic interactions.
    Ware C; Cowan WB
    Vision Res; 1982; 22(11):1353-62. PubMed ID: 7157673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direction in the color plane as a factor in chromatic flicker and chromatic motion.
    Bimler D
    J Opt Soc Am A Opt Image Sci Vis; 2012 Feb; 29(2):A74-81. PubMed ID: 22330408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.