These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 4585973)

  • 41. Synthesis and in vitro biological activity of new deaza analogues of folic acid, aminopterin, and methotrexate with an L-ornithine side chain.
    Rosowsky A; Forsch RA; Bader H; Freisheim JH
    J Med Chem; 1991 Apr; 34(4):1447-54. PubMed ID: 2016722
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In vitro and in vivo experiments with the new inhibitor of mycobacterium leprae brodimoprim alone and in combination with dapsone.
    Seydel JK; Wempe EG; Rosenfeld M; Jagannathan R; Mahadevan PR; Dhople AM
    Arzneimittelforschung; 1990 Jan; 40(1):69-75. PubMed ID: 2187440
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analogs of tetrahydrofolic acid XXV. 2,4-Diamino-6-phenethylpteridine, an inhibitor of dihydrofolic reductase.
    Baker BR; Ho BT
    J Pharm Sci; 1965 Sep; 54(9):1261-5. PubMed ID: 5881216
    [No Abstract]   [Full Text] [Related]  

  • 44. Synthesis and in vitro antifolate activity of rotationally restricted aminopterin and methotrexate analogues.
    Rosowsky A; Forsch RA; Wright JE
    J Med Chem; 2004 Dec; 47(27):6958-63. PubMed ID: 15615544
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Combinations of drugs against Mycobacterium leprae studied in mice.
    Shepard CC
    Int J Lepr Other Mycobact Dis; 1972; 40(1):33-9. PubMed ID: 4562383
    [No Abstract]   [Full Text] [Related]  

  • 46. Purification and properties of dihydrofolate reductase from cultured mammalian cells.
    Gauldie J; Marshall L; Hillcoat BL
    Biochem J; 1973 Jun; 133(2):349-56. PubMed ID: 4723779
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dihydrofolate reductases from the wild type and aminopterin-resistant mutants of Diplococcus pneumoniae.
    Trombe MC; Sicard AM
    J Bacteriol; 1975 Mar; 121(3):766-70. PubMed ID: 234945
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Neisseriaceae, a group of bacteria with dihydrofolate reductases, moderately susceptible to trimethoprim.
    Then RL
    Zentralbl Bakteriol Orig A; 1979 Dec; 245(4):450-8. PubMed ID: 44939
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Toxicity of methotrexate and metoprine in a dihydrofolate reductase gene-amplified mouse cell line.
    Hamrell M; Laszlo J; Brown OE; Sedwick WD
    Mol Pharmacol; 1981 Nov; 20(3):637-43. PubMed ID: 7329406
    [No Abstract]   [Full Text] [Related]  

  • 50. Mechansism of action of DDS.
    Hasting RC
    Int J Lepr Other Mycobact Dis; 1980 Mar; 48(1):65. PubMed ID: 6988348
    [No Abstract]   [Full Text] [Related]  

  • 51. Stabilization of dihydrofolate reductase by inhibitors in vivo and in vitro.
    Hillcoat BL; Marshall L; Gauldie J; Hiebert M
    Ann N Y Acad Sci; 1971 Nov; 186():187-208. PubMed ID: 4332034
    [No Abstract]   [Full Text] [Related]  

  • 52. Presence and properties of dihydrofolate reductases within the genus Crithidia.
    Gutteridge WE; McCormack JJ; Jaffe JJ
    Biochim Biophys Acta; 1969 May; 178(3):453-8. PubMed ID: 4389070
    [No Abstract]   [Full Text] [Related]  

  • 53. Dihydrofolic reductase in human blood cells. I. Techniques for the study of enzyme activity and intracellular amethopterin content.
    Martelli MF; Tonato M; Grignani F
    Enzymol Biol Clin (Basel); 1967; 8(5):353-62. PubMed ID: 4383611
    [No Abstract]   [Full Text] [Related]  

  • 54. Structure-based design of selective inhibitors of dihydrofolate reductase: synthesis and antiparasitic activity of 2, 4-diaminopteridine analogues with a bridged diarylamine side chain.
    Rosowsky A; Cody V; Galitsky N; Fu H; Papoulis AT; Queener SF
    J Med Chem; 1999 Nov; 42(23):4853-60. PubMed ID: 10579848
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Plasmodium berghei: lack of antimalarial activity of an analogue of folate precursor, 2,4-diamino-6-hydroxymethylpteridine in a mouse model.
    Muregi FW; Kino H; Ishih A
    Exp Parasitol; 2008 Nov; 120(3):286-9. PubMed ID: 18789931
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Antimycobacterial activity of 1-deaza-7,8-dihydropteridine derivatives against Mycobacterium tuberculosis and Mycobacterium avium complex in vitro.
    Suling WJ; Maddry JA
    J Antimicrob Chemother; 2001 Apr; 47(4):451-4. PubMed ID: 11266419
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Binding mode analysis of 2,4-diamino-5-methyl-5-deaza-6-substituted pteridines with Mycobacterium tuberculosis and human dihydrofolate reductases.
    da Cunha EF; Ramalho TC; Reynolds RC
    J Biomol Struct Dyn; 2008 Feb; 25(4):377-85. PubMed ID: 18092832
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Repositioning of DHFR Inhibitors.
    Lele AC; Mishra DA; Kamil TK; Bhakta S; Degani MS
    Curr Top Med Chem; 2016; 16(19):2125-43. PubMed ID: 26881719
    [TBL] [Abstract][Full Text] [Related]  

  • 59. DNA synthesis as a therapeutic target: the first 65 years.
    Mathews CK
    FASEB J; 2012 Jun; 26(6):2231-7. PubMed ID: 22653564
    [No Abstract]   [Full Text] [Related]  

  • 60. Irreversible enzyme inhibitors. LXXXVI. Hydrophobic bonding to dihydrofolic reductase. 8. Substituted-1-aryl-4,6-diamino-1,2-dihydro-2,2-dimethyl-s-triazines.
    Baker BR; Ho BT; Lourens GJ
    J Pharm Sci; 1967 Jun; 56(6):737-42. PubMed ID: 5231391
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.