These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 458666)

  • 1. Inhibitory mechanisms influencing complex cell orientation selectivity and their modification at high resting discharge levels.
    Sillito AM
    J Physiol; 1979 Apr; 289():33-53. PubMed ID: 458666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitory processes underlying the directional specificity of simple, complex and hypercomplex cells in the cat's visual cortex.
    Sillito AM
    J Physiol; 1977 Oct; 271(3):699-720. PubMed ID: 926020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat.
    Sillito AM
    J Physiol; 1975 Sep; 250(2):305-29. PubMed ID: 1177144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The contribution of excitatory and inhibitory inputs to the length preference of hypercomplex cells in layers II and III of the cat's striate cortex.
    Sillito AM; Versiani V
    J Physiol; 1977 Dec; 273(3):775-90. PubMed ID: 604458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effectiveness of bicuculline as an antagonist of GABA and visually evoked inhibition in the cat's striate cortex.
    Sillito AM
    J Physiol; 1975 Sep; 250(2):287-304. PubMed ID: 1177143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orientation tuning and receptive field structure in cat striate neurons during local blockade of intracortical inhibition.
    Eysel UT; Shevelev IA; Lazareva NA; Sharaev GA
    Neuroscience; 1998 May; 84(1):25-36. PubMed ID: 9522359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The spatial extent of excitatory and inhibitory zones in the receptive field of superficial layer hypercomplex cells.
    Sillito AM
    J Physiol; 1977 Dec; 273(3):791-803. PubMed ID: 604459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GABA-mediated inhibition correlates with orientation selectivity in primary visual cortex of cat.
    Li G; Yang Y; Liang Z; Xia J; Yang Y; Zhou Y
    Neuroscience; 2008 Aug; 155(3):914-22. PubMed ID: 18627788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A re-evaluation of the mechanisms underlying simple cell orientation selectivity.
    Sillito AM; Kemp JA; Milson JA; Berardi N
    Brain Res; 1980 Aug; 194(2):517-20. PubMed ID: 6248171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GABA-induced inactivation of functionally characterized sites in cat visual cortex (area 18): effects on direction selectivity.
    Crook JM; Kisvárday ZF; Eysel UT
    J Neurophysiol; 1996 May; 75(5):2071-88. PubMed ID: 8734604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Region-specificity of GABAA receptor mediated effects on orientation and direction selectivity in cat visual cortical area 18.
    Jirmann KU; Pernberg J; Eysel UT
    Exp Brain Res; 2009 Jan; 192(3):369-78. PubMed ID: 18841356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An emergent model of orientation selectivity in cat visual cortical simple cells.
    Somers DC; Nelson SB; Sur M
    J Neurosci; 1995 Aug; 15(8):5448-65. PubMed ID: 7643194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between excitation and inhibition underlying size tuning and contextual response modulation in the cat primary visual cortex.
    Ozeki H; Sadakane O; Akasaki T; Naito T; Shimegi S; Sato H
    J Neurosci; 2004 Feb; 24(6):1428-38. PubMed ID: 14960615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of GABA-induced remote inactivation on the orientation tuning of cells in area 18 of feline visual cortex: a comparison with area 17.
    Crook JM; Eysel UT; Machemer HF
    Neuroscience; 1991; 40(1):1-12. PubMed ID: 2052145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of input from the lower cortical layers on the orientation tuning of upper layer V1 cells in a primate.
    Allison JD; Casagrande VA; Bonds AB
    Vis Neurosci; 1995; 12(2):309-20. PubMed ID: 7786852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The binocular input to cells in the feline dorsal lateral geniculate nucleus (dLGN).
    Murphy PC; Sillito AM
    J Physiol; 1989 Aug; 415():393-408. PubMed ID: 2640464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GABA-induced remote inactivation reveals cross-orientation inhibition in the cat striate cortex.
    Eysel UT; Crook JM; Machemer HF
    Exp Brain Res; 1990; 80(3):626-30. PubMed ID: 2387360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms underlying orientation selectivity of neurons in the primary visual cortex of the macaque.
    Sato H; Katsuyama N; Tamura H; Hata Y; Tsumoto T
    J Physiol; 1996 Aug; 494 ( Pt 3)(Pt 3):757-71. PubMed ID: 8865072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GABA-induced inactivation of functionally characterized sites in cat striate cortex: effects on orientation tuning and direction selectivity.
    Crook JM; Kisvárday ZF; Eysel UT
    Vis Neurosci; 1997; 14(1):141-58. PubMed ID: 9057276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Function of GABAA inhibition in specifying spatial frequency and orientation selectivities in cat striate cortex.
    Vidyasagar TR; Mueller A
    Exp Brain Res; 1994; 98(1):31-8. PubMed ID: 8013589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.