These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 458847)

  • 21. Effect of dietary modification on the uptake of glucose, fatty acids, and alcohols in diabetic rats.
    Thomson AB; Rajotte R
    Am J Clin Nutr; 1983 Sep; 38(3):394-403. PubMed ID: 6613912
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrogenic transport of glucose in the normal upper duodenum. II. Unstirred water layer and estimation of real transport constants.
    Sparsø BH; Luke M; Wium E
    Scand J Gastroenterol; 1984 Jun; 19(4):568-74. PubMed ID: 6463581
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of perfusion rate on absorption, surface area, unstirred water layer thickness, permeability, and intraluminal pressure in the rat ileum in vivo.
    Lewis LD; Fordtran JS
    Gastroenterology; 1975 Jun; 68(6):1509-16. PubMed ID: 1132632
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of dietary modifications on uptake of cholesterol, glucose, fatty acids, and alcohols into rabbit intestine.
    Thomson AB
    Am J Clin Nutr; 1982 Mar; 35(3):556-65. PubMed ID: 7064907
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel method for kinetic analysis applied to transport by the uniporter OCT2.
    Wright SH; Secomb TW
    Am J Physiol Renal Physiol; 2022 Sep; 323(3):F370-F387. PubMed ID: 35862650
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The computation of saturable and linear components of intestinal and other transport kinetics.
    Atkins GL; Gardner ML
    Biochim Biophys Acta; 1977 Jul; 468(1):127-45. PubMed ID: 884081
    [TBL] [Abstract][Full Text] [Related]  

  • 27. D-glucose and L-leucine transport by human intestinal brush-border membrane vesicles.
    Harig JM; Barry JA; Rajendran VM; Soergel KH; Ramaswamy K
    Am J Physiol; 1989 Mar; 256(3 Pt 1):G618-23. PubMed ID: 2923218
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unstirred layer, source of biased Michaelis constant in membrane transport.
    Winne D
    Biochim Biophys Acta; 1973 Feb; 298(1):27-31. PubMed ID: 4736038
    [No Abstract]   [Full Text] [Related]  

  • 29. Experimental demonstration of the effect of the unstirred water layer on the kinetic constants of the membrane transport of D-glucose in rabbit jejunum.
    Thomson AB; Dietschy JM
    J Membr Biol; 1980 Jun; 54(3):221-9. PubMed ID: 7392046
    [No Abstract]   [Full Text] [Related]  

  • 30. Characterization of the passive and active transport mechanisms for bile acid uptake into rat isolated intestinal epithelial cells.
    Wilson FA; Treanor LL
    Biochim Biophys Acta; 1975 Oct; 406(2):280-93. PubMed ID: 1191650
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thiamine transport in thiamine-deficient rats. Role of the unstirred water layer.
    Hoyumpa AM; Nichols S; Schenker S; Wilson FA
    Biochim Biophys Acta; 1976 Jun; 436(2):438-47. PubMed ID: 1276223
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The mechanism whereby bile acid micelles increase the rate of fatty acid and cholesterol uptake into the intestinal mucosal cell.
    Westergaard H; Dietschy JM
    J Clin Invest; 1976 Jul; 58(1):97-108. PubMed ID: 932213
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Measurements of the jejunal unstirred layer in normal subjects and patients with celiac disease.
    Strocchi A; Corazza G; Furne J; Fine C; Di Sario A; Gasbarrini G; Levitt MD
    Am J Physiol; 1996 Mar; 270(3 Pt 1):G487-91. PubMed ID: 8638715
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of kinetic constants of hexose uptake in four animal species and man.
    Thomson AB; Hotke CA; Weinstein WM
    Comp Biochem Physiol A Comp Physiol; 1982; 72(1):225-36. PubMed ID: 6124359
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of viscous incubation media on the resistance to diffusion of the intestinal unstirred water layer in vitro.
    Johnson IT; Gee JM
    Pflugers Arch; 1982 Apr; 393(2):139-43. PubMed ID: 7099917
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unstirred water layer and age-dependent changes in rabbit jejunal D-glucose transport.
    Thomson AB
    Am J Physiol; 1979 Jun; 236(6):E685-91. PubMed ID: 443423
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fundamentals of Enzyme Kinetics: Michaelis-Menten and Non-Michaelis-Type (Atypical) Enzyme Kinetics.
    Seibert E; Tracy TS
    Methods Mol Biol; 2021; 2342():3-27. PubMed ID: 34272689
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The intestinal unstirred layer: its surface area and effect on active transport kinetics.
    Wilson FA; Dietschy JM
    Biochim Biophys Acta; 1974 Aug; 363(1):112-26. PubMed ID: 4854915
    [No Abstract]   [Full Text] [Related]  

  • 39. Experimental diabetes and intestinal barriers to absorption.
    Thomson AB
    Am J Physiol; 1983 Feb; 244(2):G151-9. PubMed ID: 6824085
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A laminar flow absorption model for a carrier-mediated transport in the intestinal tract.
    Yuasa H; Miyamoto Y; Iga T; Hanano M
    J Pharmacobiodyn; 1984 Aug; 7(8):604-6. PubMed ID: 6512682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.