BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 4589942)

  • 1. Incorporation of acyl groups into the anticodon of Escherichia coli glutamic acid transfer ribonucleic acid.
    Cedergren RJ; Beauchemin N; Toupin J
    Biochemistry; 1973 Nov; 12(23):4566-70. PubMed ID: 4589942
    [No Abstract]   [Full Text] [Related]  

  • 2. Biological function of 2-thiouridine in Escherichia coli glutamic acid transfer ribonucleic acid.
    Agris PF; Söll D; Seno T
    Biochemistry; 1973 Oct; 12(22):4331-7. PubMed ID: 4584321
    [No Abstract]   [Full Text] [Related]  

  • 3. Enzymatic synthesis of 3-(3-amino-3-carboxypropyl)uridine in Escherichia coli phenylalanine transfer RNA: transfer of the 3-amino-acid-3-carboxypropyl group from S-adenosylmethionine.
    Nishimura S; Taya Y; Kuchino Y; Oashi Z
    Biochem Biophys Res Commun; 1974 Apr; 57(3):702-8. PubMed ID: 4597321
    [No Abstract]   [Full Text] [Related]  

  • 4. Presumed anticodon structure of glutamic acid tRNA from E. coli: a possible location of a 2-thiouridine derivative in the first position of the anticodon.
    Oashi Z; Saneyoshi M; Harada F; Hara H; Nishimura S
    Biochem Biophys Res Commun; 1970 Aug; 40(4):866-72. PubMed ID: 4924671
    [No Abstract]   [Full Text] [Related]  

  • 5. N-(purin-6-ylcarbamoyl)threonine: biosynthesis in vitro in transfer RNA by an enzyme purified from Escherichia coli.
    Körner A; Söll D
    FEBS Lett; 1974 Mar; 39(3):301-6. PubMed ID: 4604806
    [No Abstract]   [Full Text] [Related]  

  • 6. Number and proportion of selenonucleosides in the transfer RNA of Escherichia coli.
    Prasada Rao YS; Cherayil JD
    Life Sci; 1974 May; 14(10):2051-9. PubMed ID: 4603265
    [No Abstract]   [Full Text] [Related]  

  • 7. The primary structure of yeast glutamic acid tRNA specific to the GAA codon.
    Kobayashi T; Irie T; Yoshida M; Takeishi K; Ukita T
    Biochim Biophys Acta; 1974 Oct; 366(2):168-81. PubMed ID: 4376021
    [No Abstract]   [Full Text] [Related]  

  • 8. Activation of several tRNAs of Escherichia coli by the phenoxyacetyl derivative of N-hydroxysuccinimide.
    Nauheimer U; Hedgcoth C
    Arch Biochem Biophys; 1974 Feb; 160(2):631-42. PubMed ID: 4598621
    [No Abstract]   [Full Text] [Related]  

  • 9. Codon-anticodon interaction studies with trinucleoside diphosphates containing 2-thiouridine, 4-thiouridine, 2,4-diethiouridine, or 2-thiocytidine.
    Vormbrock R; Morawietz R; Gassen HG
    Biochim Biophys Acta; 1974 Mar; 340(3):348-58. PubMed ID: 4596866
    [No Abstract]   [Full Text] [Related]  

  • 10. The enzymatic synthesis of N-(purin-6-ylcarbamoyl)threonine, an anticodon-adjacent base in transfer ribonucleic acid.
    Elkins BN; Keller EB
    Biochemistry; 1974 Oct; 13(22):4622-8. PubMed ID: 4609459
    [No Abstract]   [Full Text] [Related]  

  • 11. Methylation of Escherichia coli transfer ribonucleic acids by adenylate residue-specific transfer ribonucleic acid methylase from rat liver.
    Kuchino Y; Nishimura S
    Biochemistry; 1974 Aug; 13(18):3683-8. PubMed ID: 4604768
    [No Abstract]   [Full Text] [Related]  

  • 12. Escherichia coli formylmethionine tRNA: methylation of specific guanine and adenine residues catalyzed by HeLa cells tRNA methylases and the effect of these methylations on its biological properties.
    Spremulli LL; Agris PF; Brown GM; Rajbhandary UL
    Arch Biochem Biophys; 1974 May; 162(1):22-37. PubMed ID: 4598530
    [No Abstract]   [Full Text] [Related]  

  • 13. Involvement of the anticodon region of Escherichia coli tRNAGln and tRNAGlu in the specific interaction with cognate aminoacyl-tRNA synthetase. Alteration of the 2-thiouridine derivatives located in the anticodon of the tRNAs by BrCN or sulfur deprivation.
    Seno T; Agris PF; Söll D
    Biochim Biophys Acta; 1974 May; 349(3):328-38. PubMed ID: 4366808
    [No Abstract]   [Full Text] [Related]  

  • 14. Modifications of ribonucleic acid by chemical carcinogens. Modification of Escherichia coli formylmethionine transfer ribonucleic acid with N-acetoxy-2-acetylaminofluorene.
    Fujimura S; Grunberger D; Carvajal G; Weinstein IB
    Biochemistry; 1972 Sep; 11(19):3629-35. PubMed ID: 4559797
    [No Abstract]   [Full Text] [Related]  

  • 15. Loss of methionine acceptor activity resulting from a base change in the anticodon of Escherichia coli formylmethionine transfer ribonucleic acid.
    Schulman LH; Goddard JP
    J Biol Chem; 1973 Feb; 248(4):1341-5. PubMed ID: 4568813
    [No Abstract]   [Full Text] [Related]  

  • 16. Acylation of Escherichia coli tRNAtrp with 5-methyltryptophan by E. coli tryptophanyl-tRNA ligase.
    Thang MN; Buckingham RH; Dondon L
    Biochim Biophys Acta; 1973 Jul; 312(4):685-94. PubMed ID: 4354876
    [No Abstract]   [Full Text] [Related]  

  • 17. Comparative fingerprint and composition analysis of the three forms of 32P-labeled phenylalanine tRNA from chloramphenicol-treated Escherichia coli.
    Huang PC; Mann MB
    Biochemistry; 1974 Nov; 13(23):4704-10. PubMed ID: 4609463
    [No Abstract]   [Full Text] [Related]  

  • 18. Ribonucleoside phosphates via phosphorimidazolidate intermediates. Synthesis of pseudoadenosine 5'-triphosphate.
    Kozarich JW; Chinault AC; Hecht SM
    Biochemistry; 1973 Oct; 12(22):4458-63. PubMed ID: 4584326
    [No Abstract]   [Full Text] [Related]  

  • 19. Complex formation between transfer RNAs with complementary anticodons: use of matrix bound tRNA.
    Grosjean H; Takada C; Petre J
    Biochem Biophys Res Commun; 1973 Aug; 53(3):882-93. PubMed ID: 4581494
    [No Abstract]   [Full Text] [Related]  

  • 20. The nucleotide sequence of a threonine transfer ribonucleic acid from Escherichia coli.
    Clarke L; Carbon J
    J Biol Chem; 1974 Nov; 249(21):6874-85. PubMed ID: 4608712
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.