These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 4590199)

  • 1. The effect of trimethoprim on macromolecular synthesis in Escherichia coli. Ribosome maturation in RCstr and RCrel strains.
    Midgley JE; Smith RJ
    Biochem J; 1973 Oct; 136(2):235-47. PubMed ID: 4590199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of trimethoprim on macromolecular synthesis in Escherichia coli.
    Smith RJ; Midgley JE
    Biochem J; 1973 Oct; 136(2):225-34. PubMed ID: 4590198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of trimethoprim on macromolecular synthesis in Escherichia coli. Regulation of ribonucleic acid synthesis by 'Magic Spot' nucleotides.
    Smith RJ; Midgley JE
    Biochem J; 1973 Oct; 136(2):249-57. PubMed ID: 4590200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The control of ribonucleic acid synthesis in bacteria. Fluctuations in messenger ribonucleic acid synthesis in cultures recovering from amino acid starvation.
    Midgley JE; Smith RJ
    Biochem J; 1974 Feb; 138(2):155-63. PubMed ID: 4595730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The control of ribonucleic acid synthesis in bacteria. Polymerization rates for ribonucleic acids in amino acid-starved relaxed and stringent auxotrophs of Escherichia coli.
    Gray WJ; Vickers TG; Midgley JE
    Biochem J; 1972 Aug; 128(5):1021-31. PubMed ID: 4566192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The control of ribonucleic acid synthesis in bacteria. The synthesis and stability of ribonucleic acids in relaxed and stringent amino acid auxotrophs of Escherichia coli.
    Gray WJ; Midgley JE
    Biochem J; 1972 Aug; 128(5):1007-20. PubMed ID: 4566191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Turnover as a control of ribonucleic acid accumulation in bacteria undergoing stepdown.
    Midgley JE
    Biochem J; 1976 Feb; 154(2):541-52. PubMed ID: 779767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continued expression of the ribonucleic acid control gene during inhibition of Escherichia coli ribonucleic acid and protein synthesis.
    Khan SR; Yamazaki H
    J Bacteriol; 1970 Jun; 102(3):702-10. PubMed ID: 4914075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth and initiation of protein synthesis in Escherichia coli in the presence of trimethoprim.
    Harvey RJ
    J Bacteriol; 1973 Apr; 114(1):309-22. PubMed ID: 4572717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ribonucleic acid synthesis and glutamate excretion in Escherichia coli.
    Broda P
    J Bacteriol; 1968 Nov; 96(5):1528-34. PubMed ID: 4973126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An analysis of the ribosomal ribonucleic acids of Escherichia coli by hybridization techniques.
    Avery RJ; Midgley JE; Pigott GH
    Biochem J; 1969 Nov; 115(3):395-403. PubMed ID: 4901070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The control of ribonucleic acid synthesis in bacteria. The synthesis and stbility of ribonucleic acid in rifampicin-inhibited cultures of Escherichia coli.
    Gray WJ; Midgley JE
    Biochem J; 1971 Apr; 122(2):161-9. PubMed ID: 4940607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleoside triphosphate pools and the regulation of RNA synthesis in E. coli.
    Edlin G; Stent GS
    Proc Natl Acad Sci U S A; 1969 Feb; 62(2):475-82. PubMed ID: 4894329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The control of ribonucleic acid synthesis in bacteria. The synthesis and stability of ribonucleic acid in chloramphenicol-inhibited cultures of Escherichia coli.
    Midgley JE; Gray WJ
    Biochem J; 1971 Apr; 122(2):149-59. PubMed ID: 4940606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ribosome precursors accumulated by Escherichia coli during incubation with cobalt chloride.
    Blundell MR; Wild DG
    Biochem J; 1973 Nov; 136(3):565-70. PubMed ID: 4592353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polypeptide formation and polyribosomes in Escherichia coli treated with chloramphenicol.
    Cremer K; Silengo L; Schlessinger D
    J Bacteriol; 1974 May; 118(2):582-9. PubMed ID: 4597450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of streptomycin on the response of Escherichia coli ribosomes to the dissociation factor.
    Wallace BJ; Tai PC; Davis BD
    J Mol Biol; 1973 Apr; 75(2):391-400. PubMed ID: 4580682
    [No Abstract]   [Full Text] [Related]  

  • 18. Mechanism of action of negamycin in Escherichia coli K12. I. Inhibition of initiation of protein synthesis.
    Mizuno S; Nitta K; Umezawa H
    J Antibiot (Tokyo); 1970 Dec; 23(12):581-8. PubMed ID: 4950815
    [No Abstract]   [Full Text] [Related]  

  • 19. Polyamines and the accumulation of ribonucleic acid in some polyauxotrophic strains of Escherichia coli.
    Raina A; Jansen M; Cohen SS
    J Bacteriol; 1967 Nov; 94(5):1684-96. PubMed ID: 4863983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A complex between initiation factor IF2, guanosine triphosphate, and fMet-tRNA: an intermediate in initiation complex formation.
    Lockwood AH; Chakraborty PR; Maitra U
    Proc Natl Acad Sci U S A; 1971 Dec; 68(12):3122-6. PubMed ID: 4943554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.