These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 45908)

  • 1. A device for recording single unit activity in freely-moving rats by a movable fine-wire microelectrode.
    Vertes RP
    Electroencephalogr Clin Neurophysiol; 1975 Jan; 38(1):90-2. PubMed ID: 45908
    [No Abstract]   [Full Text] [Related]  

  • 2. A movable microelectrode array for chronic basal ganglia single-unit electrocorticogram co-recording in freely behaving rats.
    Zheng X; Zeng J; Chen T; Lin Y; Yu L; Li Y; Lin Z; Wu X; Chen F; Kang D; Zhang S
    Neurol Sci; 2014 Sep; 35(9):1429-39. PubMed ID: 24838541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Easy construction of an improved fine wire electrode for chronic single neuron recording in freely moving animals.
    Yamamoto T
    Physiol Behav; 1987; 39(5):649-52. PubMed ID: 3588714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new technique for implanting a fine-wire microelectrode for chronic recording of unit activity from freely-moving mice.
    Oka JI; Imanishi M
    Neurosci Res; 2000 Jan; 36(1):93-6. PubMed ID: 10678536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A driveable bundle of microwires for collecting single-unit data from freely-moving rats.
    Kubie JL
    Physiol Behav; 1984 Jan; 32(1):115-8. PubMed ID: 6718521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A lightweight microdrive for single-unit recording in freely moving rats and pigeons.
    Bilkey DK; Russell N; Colombo M
    Methods; 2003 Jun; 30(2):152-8. PubMed ID: 12725781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An improved simple tungsten microelectrode.
    Vidyasagar TR; Perry GW
    Brain Res Bull; 1979; 4(2):285-6. PubMed ID: 466514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and testing of microelectrodes for small-field cortical surface recordings.
    Kitzmiller J; Beversdorf D; Hansford D
    Biomed Microdevices; 2006 Mar; 8(1):81-5. PubMed ID: 16491335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Miniature multichannel preamplifier for extracellular recordings of single unit activity in freely moving and swimming small animals.
    Korshunov VA
    J Neurosci Methods; 2012 Apr; 206(1):15-22. PubMed ID: 22348856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Miniature manipulator with microelectrode for chronic recording of single units from freely-moving animals.
    Tamai Y; Asanuma H
    Neurosci Res; 1991 Feb; 10(1):78-81. PubMed ID: 1851979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes.
    Otto KJ; Johnson MD; Kipke DR
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):333-40. PubMed ID: 16485763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A flexible microelectrode for mouse EEG.
    Choi JH; Koch KP; Poppendieck W; Lee M; Doerge T; Shin HS
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1600-3. PubMed ID: 19964003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a chipscale integrated microelectrode/microelectronic device for brain implantable neuroengineering applications.
    Song YK; Patterson WR; Bull CW; Beals J; Hwang N; Deangelis AP; Lay C; McKay JL; Nurmikko AV; Fellows MR; Simeral JD; Donoghue JP; Connors BW
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):220-6. PubMed ID: 16003903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A sweet new multiple electrode for chronic single unit recording in moving animals.
    Chorover SL; DeLuca AM
    Physiol Behav; 1972 Oct; 9(4):671-4. PubMed ID: 4670862
    [No Abstract]   [Full Text] [Related]  

  • 15. Miniature calomel electrode for recording DC potential changes accompanying spreading depression in the freely moving rat.
    Shibata M; Siegfried B; Huston JP
    Physiol Behav; 1977 Jun; 18(6):1171-4. PubMed ID: 928539
    [No Abstract]   [Full Text] [Related]  

  • 16. Tapered tungsten fine-wire microelectrode for chronic single unit recording.
    Rose JD; Weishaar DJ
    Brain Res Bull; 1979; 4(3):435-7. PubMed ID: 487197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wireless Electrophysiological Recording of Neurons by Movable Tetrodes in Freely Swimming Fish.
    Cohen L; Vinepinsky E; Segev R
    J Vis Exp; 2019 Nov; (153):. PubMed ID: 31840665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo validation of the electronic depth control probes.
    Dombovári B; Fiáth R; Kerekes BP; Tóth E; Wittner L; Horváth D; Seidl K; Herwik S; Torfs T; Paul O; Ruther P; Neves H; Ulbert I
    Biomed Tech (Berl); 2014 Aug; 59(4):283-9. PubMed ID: 24114890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface.
    Moxon KA; Kalkhoran NM; Markert M; Sambito MA; McKenzie JL; Webster JT
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):881-9. PubMed ID: 15188854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microwire technique for recording single neurons in unrestrained animals.
    Palmer C
    Brain Res Bull; 1978; 3(3):285-9. PubMed ID: 361174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.