These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 4591475)
1. Characterization of aminoacyl transfer ribonucleic acid formation stimulated by polyamines. Takeda Y; Matsuzaki K; Igarashi K J Bacteriol; 1972 Jul; 111(1):1-6. PubMed ID: 4591475 [TBL] [Abstract][Full Text] [Related]
2. Aminoacyl transfer RNA formation. IV. Kinetic evidence of the concerted mechanism of isoleucyl-tRNA formation stimulated by spermine. Takeda Y; Matsuzaki K Biochem Biophys Res Commun; 1974 Aug; 59(4):1302-10. PubMed ID: 4606203 [No Abstract] [Full Text] [Related]
3. Necessity of polyamines for maximum isoleucyl-tRNA formation in a rat liver cell-free system. Igarashi K; Takahashi K; Hirose S Biochem Biophys Res Commun; 1974 Sep; 60(1):234-40. PubMed ID: 4424262 [No Abstract] [Full Text] [Related]
4. Effect of polyamines on isoleucyl-tRNA formation by rat-liver isoleucyl-tRNA synthetase. Igarashi K; Eguchi K; Tanaka M; Hirose S Eur J Biochem; 1978 Jan; 82(1):301-7. PubMed ID: 244419 [TBL] [Abstract][Full Text] [Related]
5. Aminoacyl transfer RNA formation. II. Comparison of the mechanisms of aminoacylations stimulated by polyamines and Mg 2+ . Igarashi K; Matsuzaki K; Takeda Y Biochim Biophys Acta; 1972 Apr; 262(4):476-87. PubMed ID: 4336270 [No Abstract] [Full Text] [Related]
6. Aminoacyl transfer RNA formation. I. Absence of pyrophosphate-ATP exchange in aminoacyl-tRNA formation stimulated by polyamines. Igarashi K; Matsuzaki K; Takeda Y Biochim Biophys Acta; 1971 Nov; 254(1):91-103. PubMed ID: 4332417 [No Abstract] [Full Text] [Related]
7. Aminoacyl transfer RNA formation. 3. Mechanism of aminoacylation stimulated by polyamines. Matsuzaki K; Takeda Y Biochim Biophys Acta; 1973 May; 308(3):339-51. PubMed ID: 4351152 [No Abstract] [Full Text] [Related]
8. The role of polyamines in the aminoacyl transfer ribonucleic acid synthetase reactions. Demonstration of the requirement for magnesium ion and a secondary stimulatory effect of spermine. Santi DV; Webster RW J Biol Chem; 1975 May; 250(10):3874-7. PubMed ID: 165187 [TBL] [Abstract][Full Text] [Related]
9. Aminoacyl transfer RNA formation. V. Effect of ethylenediaminetetraacetate on isoleucyl transfer RNA formation stimulated by either spermine or Mg2+. Takeda Y; Onishi T J Biol Chem; 1975 May; 250(10):3878-82. PubMed ID: 805133 [TBL] [Abstract][Full Text] [Related]
10. Aminoacyl transfer RNA formation. Binding of cations to transfer RNA and its role in aminoacyl transfer RNA formation. Takeda Y; Ohnishi T; Ogiso Y J Biochem; 1976 Sep; 80(3):463-9. PubMed ID: 789364 [TBL] [Abstract][Full Text] [Related]
11. Pseudoverification. Hydrolysis of aminoacyl transfer ribonucleic acid catalyzed by an aminoacyl transfer ribonucleic acid synthetase in mixed solvents. Yarus M J Biol Chem; 1973 Oct; 248(19):6750-9. PubMed ID: 4583262 [No Abstract] [Full Text] [Related]
12. Ambiguity in a polypeptide-synthesizing extract from Saccharomyces cerevisiae. Schlanger G; Friedman SM J Bacteriol; 1973 Jul; 115(1):129-38. PubMed ID: 4577739 [TBL] [Abstract][Full Text] [Related]
13. Effect of polyamines on the binding of dihydrostreptomycin and N-acetylphenylalanyl-tRNA to ribosomes from Escherichia coli. Teraoka H; Tanaka K Eur J Biochem; 1973 Dec; 40(2):423-9. PubMed ID: 4131255 [No Abstract] [Full Text] [Related]
14. Effect of polaymines on yeast cell-free protein synthesizing system. I. Influence of spermine and spermidine on aminoacyl-tRNA transfer reaction. Wolska-Mitaszko B; Jakubowicz T; Gasior E Acta Microbiol Pol; 1976; 25(3):187-97. PubMed ID: 62494 [TBL] [Abstract][Full Text] [Related]
15. Proceedings: Effect of polyamines on aminoacylation of tRNA from Phasaeolus vulgaris. de Varebeke PJ Arch Int Physiol Biochim; 1974 Oct; 82(4):775. PubMed ID: 4141446 [No Abstract] [Full Text] [Related]
16. The effect of polyamines on the thermostability of a cell free protein synthesizing system of an extreme thermophile. Ohno-Iwashita Y; Oshima T; Imahori K Experientia Suppl; 1976; 26():333-45. PubMed ID: 939277 [No Abstract] [Full Text] [Related]
17. The in-vitro and in-vivo effects of polyamines on cardiac protein biosynthesis. Gibson K; Harris P Cardiovasc Res; 1974 Sep; 8(5):688-73. PubMed ID: 4434372 [No Abstract] [Full Text] [Related]
18. Involvement of the anticodon region of Escherichia coli tRNAGln and tRNAGlu in the specific interaction with cognate aminoacyl-tRNA synthetase. Alteration of the 2-thiouridine derivatives located in the anticodon of the tRNAs by BrCN or sulfur deprivation. Seno T; Agris PF; Söll D Biochim Biophys Acta; 1974 May; 349(3):328-38. PubMed ID: 4366808 [No Abstract] [Full Text] [Related]
19. Solvent and specificity. Binding and isoleucylation of phenylalanine transfer ribonucleic acid (Escherichia coli) by isoleucyl transfer ribonucleic acid synthetase from Escherichia coli. Yarus M Biochemistry; 1972 Jun; 11(12):2352-61. PubMed ID: 4337616 [No Abstract] [Full Text] [Related]
20. Demonstration of a guanosine triphosphate-dependent enzymatic binding of aminoacyl-ribonucleic acid to Escherichia coli ribosomes. Ravel JM Proc Natl Acad Sci U S A; 1967 Jun; 57(6):1811-6. PubMed ID: 5340636 [No Abstract] [Full Text] [Related] [Next] [New Search]