These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 4591475)
21. Effect of polyamines of polyphenylalanine synthesis by Escherichia coli and rat-liver ribosomes. Igarashi K; Sugawara K; Izumi I; Nagayama C; Hirose S Eur J Biochem; 1974 Oct; 48(2):495-502. PubMed ID: 4614977 [No Abstract] [Full Text] [Related]
22. Pseudoverification of mixed aminoacyl transfer ribonucleic acids. The generality of the process. Yarus M J Biol Chem; 1973 Oct; 248(19):6755-8. PubMed ID: 4583263 [No Abstract] [Full Text] [Related]
23. The mechanism of aminoacylation of transfer ribonucleic acid. Reactivity of enzyme-bound isoleucyl adenylate. Lõvgren TN; Heinonen J; Loftfield RB J Biol Chem; 1975 May; 250(10):3854-60. PubMed ID: 1092679 [TBL] [Abstract][Full Text] [Related]
24. Macromolecular synthesis in Streptomyces antibioticus: in vitro systems for aminoacylation and translation from young and old cells. Jones GH J Bacteriol; 1975 Oct; 124(1):364-72. PubMed ID: 51847 [TBL] [Abstract][Full Text] [Related]
25. Structural requirements for recognition of Escherichia coli initiator and non-initiator transfer ribonucleic acids by bacterial T factor. Schulman LH; Pelka H; Sundari RM J Biol Chem; 1974 Nov; 249(22):7102-10. PubMed ID: 4373457 [No Abstract] [Full Text] [Related]
26. [Optimal conditions of aminoacylation of yeast tRNA Asp and tRNA Trp]. Keith G; Gangloff J; Dirheimer G Biochimie; 1971; 53(5):661-9. PubMed ID: 5123894 [No Abstract] [Full Text] [Related]
27. Phenylalanyl-tRNA synthetase from yeast. Steady-state kinetic investigation of the reaction mechanism. Berther JM; Mayer P; Dutler H Eur J Biochem; 1974 Aug; 47(1):151-63. PubMed ID: 4373237 [No Abstract] [Full Text] [Related]
28. The enzymatic synthesis of N-(purin-6-ylcarbamoyl)threonine, an anticodon-adjacent base in transfer ribonucleic acid. Elkins BN; Keller EB Biochemistry; 1974 Oct; 13(22):4622-8. PubMed ID: 4609459 [No Abstract] [Full Text] [Related]
29. The characterization of the RNAs and aminoacyl-tRNA synthetases of the blue-green alga, Anacystis nidulans. Beauchemin N; Larue B; Cedergren RJ Arch Biochem Biophys; 1973 May; 156(1):17-25. PubMed ID: 4199781 [No Abstract] [Full Text] [Related]
30. Polyamines and yellow lupin aminoacyl-tRNA synthetases. Spermine and spermidine help to maintain the active structures of aminoacyl-tRNA synthetases. Jakubowski H FEBS Lett; 1980 Jan; 109(1):63-6. PubMed ID: 7353634 [No Abstract] [Full Text] [Related]
31. Polyamines accelerate codon recognition by transfer RNAs on the ribosome. Hetrick B; Khade PK; Lee K; Stephen J; Thomas A; Joseph S Biochemistry; 2010 Aug; 49(33):7179-89. PubMed ID: 20666453 [TBL] [Abstract][Full Text] [Related]
32. Properties of transfer ribonucleic acid and aminoacyl transfer ribonucleic acid synthetases from an extremely halophilic bacterium. Griffiths E; Bayley ST Biochemistry; 1969 Feb; 8(2):541-51. PubMed ID: 4893575 [No Abstract] [Full Text] [Related]
33. Synthesis and aminoacylation of 3'-amino-3'-deoxy transfer RNA and its activity in ribosomal protein synthesis. Fraser TH; Rich A Proc Natl Acad Sci U S A; 1973 Sep; 70(9):2671-5. PubMed ID: 4582194 [TBL] [Abstract][Full Text] [Related]
34. Aminoacyl transfer ribonucleic acid synthesis in toluene-treated liver cells. Hilderman RH; Deutscher MP J Biol Chem; 1974 Aug; 249(16):5346-8. PubMed ID: 4211789 [No Abstract] [Full Text] [Related]
35. Hydrostatic pressure effects on several stages of protein synthesis in Escherichia coli. Hardon MJ; Albright LJ Can J Microbiol; 1974 Mar; 20(3):359-65. PubMed ID: 4595494 [No Abstract] [Full Text] [Related]
36. Initiation of protein synthesis by folate-sufficient and folate-deficient Streptococcus faecalis R: partial purification and properties of methionyl-transfer ribonucleic acid synthetase and methionyl-transfer ribonucleic acid formyltransferase. Samuel CE; Rabinowitz JC J Bacteriol; 1974 Apr; 118(1):21-31. PubMed ID: 4206871 [TBL] [Abstract][Full Text] [Related]
37. The effect of transfer ribonucleic acid on virally modified valyl transfer ribonucleic acid synthetase of Escherichia coli. Marchin GL; Müller UR; al-Khateeb GH J Biol Chem; 1974 Aug; 249(15):4705-11. PubMed ID: 4603076 [No Abstract] [Full Text] [Related]
38. Human tryptophanyl transfer ribonucleic acid synthetase. Comparison of the kinetic mechanism to that of the Escherichia coli tryptophanyl transfer ribonucleic acid synthetase. Penneys NS; Muench KH Biochemistry; 1974 Jan; 13(3):566-71. PubMed ID: 4358952 [No Abstract] [Full Text] [Related]
39. Differences in the magnesium dependences of the class I and class II aminoacyl-tRNA synthetases from Escherichia coli. Airas RK Eur J Biochem; 1996 Aug; 240(1):223-31. PubMed ID: 8797857 [TBL] [Abstract][Full Text] [Related]
40. Investigation of the transfer of amino acid from a transfer ribonucleic acid synthetase-aminoacyl adenylate complex to transfer ribonucleic acid. Eldred EW; Schimmel PR Biochemistry; 1972 Jan; 11(1):17-23. PubMed ID: 4550554 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]