These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 4591481)

  • 1. Mutations affecting amino sugar metabolism in Escherichia coli K-12.
    Holmes RP; Russell RR
    J Bacteriol; 1972 Jul; 111(1):290-1. PubMed ID: 4591481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic studies on ribose 5-phosphate isomerase mutants of Escherichia coli K-12.
    Skinner AJ; Cooper RA
    J Bacteriol; 1974 Jun; 118(3):1183-5. PubMed ID: 4598000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino sugar assimilation by Escherichia coli.
    Rolls JP; Shuster CW
    J Bacteriol; 1972 Nov; 112(2):894-902. PubMed ID: 4563983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coordinated regulation of amino sugar-synthesizing and -degrading enzymes in Escherichia coli K-12.
    Plumbridge JA; Cochet O; Souza JM; Altamirano MM; Calcagno ML; Badet B
    J Bacteriol; 1993 Aug; 175(16):4951-6. PubMed ID: 8349539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of amino sugar metabolism in Escherichia coli and isolation of mutants unable to degrade amino sugars.
    White RJ
    Biochem J; 1968 Feb; 106(4):847-58. PubMed ID: 4866432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Nitrogen Regulatory PII Protein (GlnB) and
    Rodionova IA; Goodacre N; Babu M; Emili A; Uetz P; Saier MH
    J Bacteriol; 2018 Mar; 200(5):. PubMed ID: 29229699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternative route for biosynthesis of amino sugars in Escherichia coli K-12 mutants by means of a catabolic isomerase.
    Vogler AP; Trentmann S; Lengeler JW
    J Bacteriol; 1989 Dec; 171(12):6586-92. PubMed ID: 2687246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-acetylglucosamine-6-phosphate deacetylase and glucosamine-6-phosphate deaminase from Escherichia coli.
    White RJ; Pasternak CA
    Methods Enzymol; 1975; 41():497-502. PubMed ID: 236479
    [No Abstract]   [Full Text] [Related]  

  • 9. A dominant mutation in the gene for the Nag repressor of Escherichia coli that renders the nag regulon uninducible.
    Plumbridge JA
    J Gen Microbiol; 1992 May; 138(5):1011-7. PubMed ID: 1645125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why does Escherichia coli grow more slowly on glucosamine than on N-acetylglucosamine? Effects of enzyme levels and allosteric activation of GlcN6P deaminase (NagB) on growth rates.
    Alvarez-AƱorve LI; Calcagno ML; Plumbridge J
    J Bacteriol; 2005 May; 187(9):2974-82. PubMed ID: 15838023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of the nag regulon of Escherichia coli by N-acetylglucosamine and glucosamine: role of the cyclic AMP-catabolite activator protein complex in expression of the regulon.
    Plumbridge JA
    J Bacteriol; 1990 May; 172(5):2728-35. PubMed ID: 2158978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gratuitous induction by N-acetylmannosamine of germ tube formation and enzymes for N-acetylglucosamine utilization in Candida albicans.
    Sullivan PA; Shepherd MG
    J Bacteriol; 1982 Sep; 151(3):1118-22. PubMed ID: 6286591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and characterization of the N-acetylglucosamine operon of Escherichia coli.
    Peri KG; Goldie H; Waygood EB
    Biochem Cell Biol; 1990 Jan; 68(1):123-37. PubMed ID: 2190615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induction and repression by arginine in Escherichia coli. Different mechanisms.
    Forsyth GW; Carnevale HN; Jones EE
    J Biol Chem; 1969 Oct; 244(19):5226-32. PubMed ID: 4899014
    [No Abstract]   [Full Text] [Related]  

  • 15. Cyclic 3',5'-adenosine monophosphate and N-acetylglucosamine-6-phosphate as regulatory signals in catabolite repression of the lac operon in Escherichia coli.
    Goldenbaum PE; Broman RL; Dobrogosz WJ
    J Bacteriol; 1970 Sep; 103(3):663-70. PubMed ID: 4319836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FURTHER STUDIES ON THE REGULATION OF AMINO SUGAR METABOLISM IN BACILLUS SUBTILIS.
    BATES CJ; PASTERNAK CA
    Biochem J; 1965 Jul; 96(1):147-54. PubMed ID: 14343123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preliminary mapping of mutations affecting exonuclease 3 in Escherichia coli K-12.
    Milcarek C; Weiss B
    J Bacteriol; 1973 Feb; 113(2):1086-8. PubMed ID: 4570597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino sugar sensitivity in Escherichia coli mutants unable to grow on N-acetylglucosamine.
    Bernheim NJ; Dobrogosz WJ
    J Bacteriol; 1970 Feb; 101(2):384-91. PubMed ID: 4905307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbohydrate accumulation and metabolism in Escherichia coli: the close linkage and chromosomal location of ctr mutations.
    Wang RJ; Morse HG; Morse ML
    J Bacteriol; 1969 May; 98(2):605-10. PubMed ID: 4891263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UDP-N-acetyl-D-glucosamine 2'-epimerase from Escherichia coli.
    Kawamura T; Ishimoto N; Ito E
    Methods Enzymol; 1982; 83():515-9. PubMed ID: 7048002
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.