These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 4591944)

  • 1. Sodium-stimulated glutamate transport in osmotically shocked cells and membrane vesicles of Escherichia coli.
    Miner KM; Frank L
    J Bacteriol; 1974 Mar; 117(3):1093-8. PubMed ID: 4591944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of a glutamate-aspartate binding protein with the glutamate transport system of Escherichia coli.
    Willis RC; Furlong CE
    J Biol Chem; 1975 Apr; 250(7):2581-6. PubMed ID: 1091636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium-stimulated glutamate uptake in membrane vesicles of Escherichia coli: the role of ion gradients.
    MacDonald RE; Lanyi JK; Greene RV
    Proc Natl Acad Sci U S A; 1977 Aug; 74(8):3167-70. PubMed ID: 20621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of growth conditions on glutamate transport in the wild-type strain and glutamate-utilizing mutants of Escherichia coli.
    Kahane S; Marcus M; Metzer E; Halpern YS
    J Bacteriol; 1976 Mar; 125(3):762-9. PubMed ID: 767325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutamate transport driven by an electrochemical gradient of sodium ion in membrane vesicles of Escherichia coli B.
    Hasan SM; Tsuchiya T
    Biochem Biophys Res Commun; 1977 Sep; 78(1):122-8. PubMed ID: 334163
    [No Abstract]   [Full Text] [Related]  

  • 6. Sodium-dependent glutamate transport in membrane vesicles of Escherichia coli K-12.
    Kahane S; Marcus M; Barash H; Halpern YS
    FEBS Lett; 1975 Aug; 56(2):235-9. PubMed ID: 1098933
    [No Abstract]   [Full Text] [Related]  

  • 7. Sodium and potassium requirements for active transport of glutamate by Escherichia coli K-12.
    Halpern YS; Barash H; Dover S; Druck K
    J Bacteriol; 1973 Apr; 114(1):53-8. PubMed ID: 4572725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium-stimulated transport of glutamate in Escherichia coli.
    Frank L; Hopkins I
    J Bacteriol; 1969 Oct; 100(1):329-36. PubMed ID: 4898997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutamate transport in membrane vesicles of the wild-type strain and glutamate-utilizing mutants of Escherichia coli.
    Kahane S; Marcus M; Metzer E; Halpern YS
    J Bacteriol; 1976 Mar; 125(3):770-5. PubMed ID: 767326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of glutamate transport in Escherichia coli B. 2. Kinetics of glutamate transport driven by artificially imposed proton and sodium ion gradients across the cytoplasmic membrane.
    Fujimura T; Yamato I; Anraku Y
    Biochemistry; 1983 Apr; 22(8):1959-65. PubMed ID: 6133551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of energy coupling for transport of D-ribose in Escherichia coli.
    Curtis SJ
    J Bacteriol; 1974 Oct; 120(1):295-303. PubMed ID: 4278446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 1. Membrane vesicles of Escherichia coli K-12 CS7, a strain gentically derepressed for glutamate permease, maintain low aspartate transport activity, like that of prep.
    Kahane S; Metzer E; Halpern YS
    Eur J Biochem; 1976 Jul; 66(3):583-9. PubMed ID: 782886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium gradient-dependent L-glutamate transport in renal brush border membrane vesicles. Effect of an intravesicular > extravesicular potassium gradient.
    Schneider EG; Sacktor B
    J Biol Chem; 1980 Aug; 255(16):7645-9. PubMed ID: 7400138
    [No Abstract]   [Full Text] [Related]  

  • 14. Glutamate transport driven by an electrochemical gradient of sodium ions in Escherichia coli.
    Tsuchiya T; Hasan SM; Raven J
    J Bacteriol; 1977 Sep; 131(3):848-53. PubMed ID: 330502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetics of glycylglycine transport in Escherichia coli.
    Cowell JL
    J Bacteriol; 1974 Oct; 120(1):139-46. PubMed ID: 4278690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of sugars and amino acids in bacteria. 8. Properties and regulation of the active transport reaction of proline in Escherichia coli.
    Morikawa A; Suzuki H; Anraku Y
    J Biochem; 1974 Feb; 75(2):229-41. PubMed ID: 4600708
    [No Abstract]   [Full Text] [Related]  

  • 17. Coupling of energy to active transport of amino acids in Escherichia coli.
    Simoni RD; Shallenberger MK
    Proc Natl Acad Sci U S A; 1972 Sep; 69(9):2663-7. PubMed ID: 4341704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A spin-label study of energy-coupled active transport in Escherichia coli membrane vesicles.
    Baldassare JJ; Robertson DE; McAfee AG; Ho C
    Biochemistry; 1974 Dec; 13(25):5210-4. PubMed ID: 4373033
    [No Abstract]   [Full Text] [Related]  

  • 19. Generation of an electrochemical proton gradient by nitrate respiration in membrane vesicles from anaerobically grown Escherichia coli.
    Boonstra J; Konings WN
    Eur J Biochem; 1977 Sep; 78(2):361-8. PubMed ID: 21080
    [No Abstract]   [Full Text] [Related]  

  • 20. Counterflow of L-glutamate in plasma membrane vesicles and reconstituted preparations from rat brain.
    Pines G; Kanner BI
    Biochemistry; 1990 Dec; 29(51):11209-14. PubMed ID: 1980217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.