BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 4592690)

  • 1. Peptide mapping of aminoacyl-tRNA synthetases: evidence for internal sequence homology in Escherichia coli leucyl-tRNA synthetase.
    Waterson RM; Konigsberg WH
    Proc Natl Acad Sci U S A; 1974 Feb; 71(2):376-80. PubMed ID: 4592690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homology of yeast mitochondrial leucyl-tRNA synthetase and isoleucyl- and methionyl-tRNA synthetases of Escherichia coli.
    Tzagoloff A; Akai A; Kurkulos M; Repetto B
    J Biol Chem; 1988 Jan; 263(2):850-6. PubMed ID: 2826465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural studies on aminoacyl-tRNA synthetases. A tentative correlation between the subunit size and the occurrence of repeated sequences.
    Potier S; Robbe-Saul S; Boulanger Y
    Biochim Biophys Acta; 1980 Jul; 624(1):130-41. PubMed ID: 6996739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methionyl-tRNA synthetase from Escherichia coli. Primary structure of the active crystallised tryptic fragment.
    Barker DG; Ebel JP; Jakes R; Bruton CJ
    Eur J Biochem; 1982 Oct; 127(3):449-57. PubMed ID: 6756915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical strategy for determination of active site sequences in aminoacyl-tRNA synthetases.
    Beauvallet C; Hountondji C; Schmitter JM
    J Chromatogr; 1988 Apr; 438(2):347-57. PubMed ID: 2838497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical comparison of the Neurospora crassa wild type and the temperature-sensitive and leucine-auxotroph mutant leu-5. Purification of the cytoplasmic and mitochondrial leucyl-tRNA synthetases and comparison of the enzymatic activities and the degradation patterns.
    Kunugi S; Uehara-Kunugi Y; von der Haar F; Schischkoff J; Freist W; Englisch U; Cramer F
    Eur J Biochem; 1986 Jul; 158(1):43-9. PubMed ID: 2942398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macromolecular complex of aminoacyl-tRNA synthetases from sheep liver. Identification of the methionyl-tRNA synthetase component by affinity labeling.
    Brevet A; Geffrotin C; Kellermann O
    Eur J Biochem; 1982 Jun; 124(3):483-8. PubMed ID: 6286305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Derepression of synthesis of the aminoacyl-transfer ribonucleic acid synthetases for the branched-chain amino acids of Escherichia coli.
    McGinnis E; Williams AC; Williams LS
    J Bacteriol; 1974 Aug; 119(2):554-9. PubMed ID: 4604302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of the biosynthesis of aminoacyl-tRNA synthetases and of tRNA in Escherichia coli. IV. Mutants with increased levels of leucyl- or seryl-tRNA synthetase.
    Theall G; Low KB; Söll D
    Mol Gen Genet; 1979 Jan; 169(2):205-11. PubMed ID: 375009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and binding properties of leucyl-tRNA synthetase from Escherichia coli MRE 600.
    Granda S; Hustedt H; Flossdorf J; Kula MR
    Mol Cell Biochem; 1979 Apr; 24(3):175-81. PubMed ID: 379593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the recovery of Cys-containing peptides during peptide mapping by HPLC. Tryptic peptides of Trp-tRNA synthetase of E.coli.
    Koeppe RE; Haw JH; Paczkowski JA
    FEBS Lett; 1985 Apr; 183(2):313-6. PubMed ID: 3886424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of N-terminal truncated yeast aspartyl-tRNA synthetase and structural characteristics of the cleaved domain.
    Lorber B; Mejdoub H; Reinbolt J; Boulanger Y; Giegé R
    Eur J Biochem; 1988 May; 174(1):155-61. PubMed ID: 3286258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptides at the tRNA binding site of the crystallizable monomeric form of E. coli methionyl-tRNA synthetase.
    Schulman LH; Pelka H; Leon O
    Nucleic Acids Res; 1987 Dec; 15(24):10523-30. PubMed ID: 3320968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and properties of chloroplast leucyl-tRNA synthetase from a higher plant: Phaseolus vulgaris.
    Souciet G; Dietrich A; Colas B; Razafimahatratra P; Weil JH
    J Biol Chem; 1982 Aug; 257(16):9598-604. PubMed ID: 7050099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repeating sequences in aminoacyl-tRNA synthetases.
    Koch GL; Boulanger Y; Hartley BS
    Nature; 1974 May; 249(455):316-20. PubMed ID: 4841363
    [No Abstract]   [Full Text] [Related]  

  • 16. Structural studies on isoleucyl-tRNA synthetase from E. coli.
    Kula MR
    FEBS Lett; 1973 Sep; 35(2):299-302. PubMed ID: 4582946
    [No Abstract]   [Full Text] [Related]  

  • 17. I. A study of the stages in the quantitative isolation of aminoacyl-tRNA synthetase activities from mouse liver.
    Berg BH
    Biochim Biophys Acta; 1975 Jun; 395(2):164-72. PubMed ID: 1138938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of purified valyl-transfer ribonucleic acid synthetase from Bacillus stearothermophilus and from Escherichia coli.
    Wilkinson S; Knowles JR
    Biochem J; 1974 May; 139(2):391-8. PubMed ID: 4614793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-molecular-weight forms of aminoacyl-tRNA synthetases and tRNA modification enzymes in Escherichia coli.
    Harris CL
    J Bacteriol; 1990 Apr; 172(4):1798-803. PubMed ID: 2180904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methionyl-tRNA synthetase from Escherichia coli: primary structure at the binding site for the 3'-end of tRNAfMet.
    Hountondji C; Blanquet S; Lederer F
    Biochemistry; 1985 Feb; 24(5):1175-80. PubMed ID: 3913464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.