These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 4593312)

  • 1. [The formation of higher alcohols by amino acid auxotrophic mutants of Saccharomyces cerevisiae. I. The conversion of amino acids to higher alcohols (author's transl)].
    Vollbrecht D; Radler F
    Arch Mikrobiol; 1973 Dec; 94(4):351-8. PubMed ID: 4593312
    [No Abstract]   [Full Text] [Related]  

  • 2. [The formation of higher alcohols by amino acid auxotrophic mutants of Saccharomyces cerevisiae. II. The influence of threonine, isoleucine, valine and leucine (author's transl)].
    Vollbrecht D
    Arch Microbiol; 1974 Apr; 97(2):149-62. PubMed ID: 4599697
    [No Abstract]   [Full Text] [Related]  

  • 3. [The formation of higher alcohols by amino acid auxotrophic mutants of Saccharomyces cerevisiae. III. Higher alcohols as byproducts of the biosynthesis of amino acids tauthor's transl)].
    Vollbrecht D; Radler F
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1975; 130(3):238-44. PubMed ID: 1103521
    [No Abstract]   [Full Text] [Related]  

  • 4. Biosynthesis of higher alcohol flavour compounds by the yeast Saccharomyces cerevisiae: impact of oxygen availability and responses to glucose pulse in minimal growth medium with leucine as sole nitrogen source.
    Espinosa Vidal E; de Morais MA; François JM; de Billerbeck GM
    Yeast; 2015 Jan; 32(1):47-56. PubMed ID: 25274068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Corynebacterium crenatum to produce higher alcohols for biofuel using hydrolysates of duckweed (Landoltia punctata) as feedstock.
    Su H; Jiang J; Lu Q; Zhao Z; Xie T; Zhao H; Wang M
    Microb Cell Fact; 2015 Feb; 14():16. PubMed ID: 25889648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of branched-chain amino acid aminotransferases in the production of fusel alcohols during fermentation in yeast.
    Eden A; Van Nedervelde L; Drukker M; Benvenisty N; Debourg A
    Appl Microbiol Biotechnol; 2001 Apr; 55(3):296-300. PubMed ID: 11341309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 'Fusel' alcohols induce hyphal-like extensions and pseudohyphal formation in yeasts.
    Dickinson JR
    Microbiology (Reading); 1996 Jun; 142 ( Pt 6)():1391-1397. PubMed ID: 8704979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activities of the enzymes of the Ehrlich pathway and formation of branched-chain alcohols in Saccharomyces cerevisiae and Candida utilis grown in continuous culture on valine or ammonium as sole nitrogen source.
    Derrick S; Large PJ
    J Gen Microbiol; 1993 Nov; 139(11):2783-92. PubMed ID: 8277258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of threonine deaminase in multivalent repression of the isoleucine-valine pathway in Saccharomyces cerevisiae.
    Bollon AP; Magee PT
    Proc Natl Acad Sci U S A; 1971 Sep; 68(9):2169-72. PubMed ID: 4943789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Import of branched-chain amino acids in Saccharomyces cerevisiae.
    Didion T; Grauslund M; Kielland-Brandt MC; Andersen HA
    Folia Microbiol (Praha); 1996; 41(1):87. PubMed ID: 9090831
    [No Abstract]   [Full Text] [Related]  

  • 11. A high-affinity uptake system for branched-chain amino acids in Saccharomyces cerevisiae.
    Tullin S; Gjermansen C; Kielland-Brandt MC
    Yeast; 1991 Dec; 7(9):933-41. PubMed ID: 1803818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of AAT1: a gene involved in the regulation of amino acid transport in Saccharomyces cerevisiae.
    Garrett JM
    J Gen Microbiol; 1989 Sep; 135(9):2429-37. PubMed ID: 2697749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic responses of Saccharomyces cerevisiae to valine and ammonium pulses during four-stage continuous wine fermentations.
    Clement T; Perez M; Mouret JR; Sanchez I; Sablayrolles JM; Camarasa C
    Appl Environ Microbiol; 2013 Apr; 79(8):2749-58. PubMed ID: 23417007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of auxotrophic lactobacilli growth by amino acid cross-feeding interaction.
    Lin L; Du R; Wang Y; Wu Q; Xu Y
    Int J Food Microbiol; 2022 Sep; 377():109769. PubMed ID: 35709583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Properties of amino acid pools of actinomycin-producing actinomycetes].
    Sorokina NV; Orlova TI; Silaev AB
    Antibiotiki; 1973 Sep; 18(9):788-93. PubMed ID: 4128397
    [No Abstract]   [Full Text] [Related]  

  • 16. Amino acid degradation by anaerobic bacteria.
    Barker HA
    Annu Rev Biochem; 1981; 50():23-40. PubMed ID: 6791576
    [No Abstract]   [Full Text] [Related]  

  • 17. Valine, leucine, and isoleucine metabolism by lactating bovine mammary tissue.
    Wohlt JE; Clark JH; Derrig RG; Davis CL
    J Dairy Sci; 1977 Dec; 60(12):1875-82. PubMed ID: 563875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Threonine, isoleucine, valine and leucine requirements of the young kitten.
    Anderson PA; Baker DH; Sherry PA; Teeter RG; Corbin JE
    J Anim Sci; 1980 Feb; 50(2):266-71. PubMed ID: 7358597
    [No Abstract]   [Full Text] [Related]  

  • 19. Amino acid transport in a polyaromatic amino acid auxotroph of Saccharomyces cerevisiae.
    Greasham RL; Moat AG
    J Bacteriol; 1973 Sep; 115(3):975-81. PubMed ID: 4580574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The production of extracellular and intracellular free amino acids during aerated fermentation of glucose by baker's yeast (Saccharomyces cerevisiae).
    Malaney GW; Tanner RD; Rodrigues AM
    Folia Microbiol (Praha); 1991; 36(5):468-77. PubMed ID: 1821872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.