These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 4593966)
1. Peptide-bond formation on the ribosome. A comparison of the acceptor-substrate specificity of peptidyl transferase in bacterial and mammalian ribosomes using puromycin analogues. Eckermann DJ; Greenwell P; Symons RH Eur J Biochem; 1974 Feb; 41(3):547-54. PubMed ID: 4593966 [No Abstract] [Full Text] [Related]
2. Ribosomal peptidyl transferase: recognition points on the 3'-terminus of AA tRNA. Ringer D; Chládek S FEBS Lett; 1974 Feb; 39(1):75-8. PubMed ID: 4605066 [No Abstract] [Full Text] [Related]
3. Inhibitory effect of EF G and GMPPCP on peptidyl transferase. Otaka T; Kaji A FEBS Lett; 1974 Aug; 44(3):324-9. PubMed ID: 4606672 [No Abstract] [Full Text] [Related]
4. Peptidyl transferase activity of ribosomal particles lacking protein L11. Howard GA; Gordon J FEBS Lett; 1974 Nov; 48(2):271-4. PubMed ID: 4611798 [No Abstract] [Full Text] [Related]
5. Affinity labelling of ribosomal peptidyl transferase by a puromycin analogue. Harris RJ; Greenwell P; Symons RH Biochem Biophys Res Commun; 1973 Nov; 55(1):117-24. PubMed ID: 4595629 [No Abstract] [Full Text] [Related]
6. The effect of antibiotics on the substrate binding to the acceptor and donor site of ribosomal peptidyltransferase of an erythromycin-resistant mutant of Escherichia coli. Cerná J; Rychlík I Biochim Biophys Acta; 1972 Dec; 287(2):292-300. PubMed ID: 4609472 [No Abstract] [Full Text] [Related]
7. L-Phenylalanine esters of open-chain analog of adenosine as substrates for ribosomal peptidyl transferase. Chládek S; Ringer D; Zemlicka J Biochemistry; 1973 Dec; 12(25):5135-8. PubMed ID: 4601225 [No Abstract] [Full Text] [Related]
8. Peptidyl transferase inhibitors alter the covalent reaction of BrAcPhe-tRNA with the E. coli ribosome. Oen H; Pellegrini M; Cantor CR FEBS Lett; 1974 Sep; 45(1):218-22. PubMed ID: 4606896 [No Abstract] [Full Text] [Related]
9. Interactions between elongation factor tu-guanosine triphosphate and ribosomes and the role of ribosome-bound transfer RNA in guanosine triphosphatase reaction. Kawakita M; Arai K; Kaziro Y J Biochem; 1974 Oct; 76(4):801-9. PubMed ID: 4373450 [No Abstract] [Full Text] [Related]
10. Inhibition of the peptidyl transferase A-site function by 2'-O-aminoacyloligonucleotides. Ringer D; Chládek S Biochem Biophys Res Commun; 1974 Feb; 56(3):760-6. PubMed ID: 4597067 [No Abstract] [Full Text] [Related]
11. 2' (3')-O-N-formylmethionyl)-adenosine-5'-phosphate, a new donor substrate in peptidyl transferase catalyzed reactions. Cerná J; Rychlík I; Krayevsky AA; Gottikh BP FEBS Lett; 1973 Dec; 37(2):188-91. PubMed ID: 4587216 [No Abstract] [Full Text] [Related]
12. Peptide bond formation on the ribosome. Structural requirements for inhibition of protein synthesis and of release of peptides from peptidyl-tRNA on bacterial and mammalian ribosomes by aminoacyl and nucleotidyl analogues of puromycin. Harris RJ; Hanlon JE; Symons RH Biochim Biophys Acta; 1971 Jun; 240(2):244-62. PubMed ID: 4934602 [No Abstract] [Full Text] [Related]
13. Puromycin analogs. Ribosomal binding and peptidyl transferase substrate activity of a carbocyclic analog of 8-azapuromycin. Duquette PH; Ritter CL; Vince R Biochemistry; 1974 Nov; 13(23):4855-9. PubMed ID: 4609468 [No Abstract] [Full Text] [Related]
14. "Nonisomerizable" 2'-and 3'-O-aminoacyl dinucleoside phosphates. Chemical synthesis and acceptor activity in the ribosomal peptidyltransferase reaction. Chládek S; Ringer D; Quiggle K Biochemistry; 1974 Jun; 13(13):2727-35. PubMed ID: 4603216 [No Abstract] [Full Text] [Related]
15. Substrate specificity of Escherichia coli peptidyltransferase at the donor site. Mao JC Biochem Biophys Res Commun; 1973 May; 52(2):595-600. PubMed ID: 4575959 [No Abstract] [Full Text] [Related]
16. Affinity labelling of 23-S ribosomal RNA in the active centre of Escherichia coli peptidyl transferase. Greenwell P; Harris RJ; Symons RH Eur J Biochem; 1974 Dec; 49(3):539-44. PubMed ID: 4613553 [No Abstract] [Full Text] [Related]
17. Studies on peptidyl transferase in free ribosomes derived from rat liver. Innanen VT; Nicholls DM Biochim Biophys Acta; 1974 Aug; 361(2):221-9. PubMed ID: 4607114 [No Abstract] [Full Text] [Related]
18. The mechanism of covalent reaction of bromoacetyl-phenylalanyl-transfer RNA with the peptidyl-transfer RNA binding site of the Escherichia coli ribosome. Pellegrini M; Oen H; Eilat D; Cantor CR J Mol Biol; 1974 Oct; 88(4):809-29. PubMed ID: 4610159 [No Abstract] [Full Text] [Related]
19. Enhancement of the phenylalanyl-oligonucleotide binding to the peptidyl recognition center of ribosomal peptidyltransferase and inhibition of the chloramphenicol binding to ribosomes. Yukioka M; Morisawa S Biochim Biophys Acta; 1971 Dec; 254(2):304-15. PubMed ID: 4944565 [No Abstract] [Full Text] [Related]
20. Peptidyl transferase activity in rat skeletal muscle ribosomes after protein restriction. von der Decken A J Nutr; 1977 Jul; 107(7):1335-9. PubMed ID: 195020 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]