BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 4594141)

  • 41. Characterization of a photoexposed sulfhydryl group of bovine rhodopsin available for chemical modification.
    Robertson GA; Bello AC; Stevenson WD; Rockey JH
    Biochem Biophys Res Commun; 1974 Aug; 59(3):1151-6. PubMed ID: 4472029
    [No Abstract]   [Full Text] [Related]  

  • 42. The interaction of glyceraldehyde 3-phosphate dehydrogenase with human erythrocyte membranes.
    McDaniel CF; Kirtley ME; Tanner MJ
    J Biol Chem; 1974 Oct; 249(20):6478-85. PubMed ID: 4608386
    [No Abstract]   [Full Text] [Related]  

  • 43. Glyceraldehyde-3-phosphate dehydrogenase catalyzed hydration of the 5-6 double bond of reduced beta-nicotinamide adenine dinucleotide (betaNADH). Formation of beta-6-hydroxy-1,4,5,6-tetrahydronicotinamide adenine dinucleotide.
    Oppenheimer NJ; Kaplan NO
    Biochemistry; 1974 Nov; 13(23):4685-94. PubMed ID: 4371815
    [No Abstract]   [Full Text] [Related]  

  • 44. Effect of modification of SH-groups in D-glyceraldehyde-3-phosphate dehydrogenase on the properties of enzyme--coenzyme complex.
    Vas M; Bartha F
    Acta Biochim Biophys Acad Sci Hung; 1976; 11(2-3):95-104. PubMed ID: 188295
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Use of immobilized enzymes for synthetic purposes.
    Marshall DL
    Adv Exp Med Biol; 1974; 42(0):345-68. PubMed ID: 4367331
    [No Abstract]   [Full Text] [Related]  

  • 46. The reaction of epoxides with yeast glyceraldehyde--3--phosphate dehydrogenase.
    McCaul S; Byers LD
    Biochem Biophys Res Commun; 1976 Oct; 72(3):1028-34. PubMed ID: 791285
    [No Abstract]   [Full Text] [Related]  

  • 47. The modification of functional groups of aspartate-aminotransferase by tetranitromethane.
    Demidkina TV; Bocharov AL; Polyanovskii OL; Karpeiskii MY
    Mol Biol; 1973; 7(3):372-80. PubMed ID: 4797885
    [No Abstract]   [Full Text] [Related]  

  • 48. Choline acetyltransferase. Inhibition by thiol reagents.
    Roskoski R
    J Biol Chem; 1974 Apr; 249(7):2156-9. PubMed ID: 4856436
    [No Abstract]   [Full Text] [Related]  

  • 49. The regulatory center of D-glyceraldehyde-3-phosphate dehydrogenase.
    Ovádi J; Nuridsány M; Keleti T
    Acta Biochim Biophys Acad Sci Hung; 1972; 7(2):133-41. PubMed ID: 4369349
    [No Abstract]   [Full Text] [Related]  

  • 50. Studies on a possible phosphoryl-enzyme intermediate in the catalytic reaction of yeast phosphoglycerate kinase.
    Larsson-Raźnikiewicz M; Schierbeck B
    Biochem Biophys Res Commun; 1974 Apr; 57(3):627-34. PubMed ID: 4363936
    [No Abstract]   [Full Text] [Related]  

  • 51. A method for estimating sequence homology from amino acid compositions. The evolution of Ascaris employing aldolase and glyceraldehyde-3-phosphate dehydrogenase.
    Dedman JR; Gracy RW; Harris BG
    Comp Biochem Physiol B; 1974 Dec; 49(4):715-31. PubMed ID: 4434737
    [No Abstract]   [Full Text] [Related]  

  • 52. Relationship between structure and chemical reactivity in D-glyceraldehyde 3-phosphate dehydrogenase. Trinitrophenylation of the lysine residues in yeast, sturgeon and rabbit muscle enzyme.
    Nakano M; Foucault G; Pudles J
    J Mol Biol; 1976 Aug; 105(2):275-91. PubMed ID: 184288
    [No Abstract]   [Full Text] [Related]  

  • 53. The specificity of induced conformational changes. The case of yeast glyceraldehyde-3-phosphate dehydrogenase.
    Byers LD; Koshland DE
    Biochemistry; 1975 Aug; 14(16):3661-9. PubMed ID: 169882
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structure and reactivity relationship in glyceraldehyde-3-phosphate dehydrogenase. Dinitrophenylation of cysteine residues of yeast and rabbit muscle enzymes.
    Foucault G; Bodo JM; Nakano M
    Eur J Biochem; 1981 Oct; 119(3):625-32. PubMed ID: 7030743
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Measurements of the concentration of active sites in preparations of yeast alcohol dehydrogenase.
    Dickinson M
    Eur J Biochem; 1974 Jan; 41(1):31-6. PubMed ID: 4361286
    [No Abstract]   [Full Text] [Related]  

  • 56. Sequence variability and structure of D-glyceraldehyde-3-phosphate dehydrogenase.
    Olsen KW; Moras D; Rossmann MG
    J Biol Chem; 1975 Dec; 250(24):9313-21. PubMed ID: 1104621
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sequence homologies among pyridine nucleotide-linked dehydrogenases: possible partial gene duplications in glyceraldehyde-3-phosphate dehydrogenase.
    Engel PC
    FEBS Lett; 1973 Jun; 33(1):151-3. PubMed ID: 4578953
    [No Abstract]   [Full Text] [Related]  

  • 58. Functional groups of diphosphopyridine nucleotide-linked isocitrate dehydrogenase from bovine heart. Studies of cysteine residues.
    Fan CC; Plaut GW
    J Biol Chem; 1974 Aug; 249(15):4839-45. PubMed ID: 4367808
    [No Abstract]   [Full Text] [Related]  

  • 59. Immobilized dimers of D-glyceraldehyde-3-phosphate dehydrogenase.
    Nagradova NK; Golovina TO; Mevkh AT
    FEBS Lett; 1974 Dec; 49(2):242-5. PubMed ID: 4442603
    [No Abstract]   [Full Text] [Related]  

  • 60. Considerations of citrate synthase in procaryotes and eucaryotes. The case of yeast citrate synthase; the absence of sulphydryl groups and reactivity with sulphydryl reagents-an apparent contradiction.
    Greenblatt GA; Sarkissian IV
    Subcell Biochem; 1974 Sep; 3(3):249-56. PubMed ID: 4612883
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.