These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 4594375)

  • 1. Active transport in bacterial cytoplasmic membrane vesicles.
    Kaback HR
    Symp Soc Exp Biol; 1973; 27():145-74. PubMed ID: 4594375
    [No Abstract]   [Full Text] [Related]  

  • 2. Membrane potential and active transport in membrane vesicles from Escherichia coli.
    Schuldiner S; Kaback HR
    Biochemistry; 1975 Dec; 14(25):5451-61. PubMed ID: 172125
    [No Abstract]   [Full Text] [Related]  

  • 3. Mechanisms of active transport in isolated bacterial membrane vesicles. XII. Active transport by a mutant of Escherichia coli uncoupled for oxidative phosphorylation.
    Prezioso G; Hong JS; Kerwar GK; Kaback HR
    Arch Biochem Biophys; 1973 Feb; 154(2):575-82. PubMed ID: 4266260
    [No Abstract]   [Full Text] [Related]  

  • 4. Mechanisms of active transport in isolated bacterial membrane vesicles. 8. The transport of amino acids by membranes prepared from Escherichia coli.
    Lombardi FJ; Kaback HR
    J Biol Chem; 1972 Dec; 247(24):7844-57. PubMed ID: 4344983
    [No Abstract]   [Full Text] [Related]  

  • 5. Mechanisms of active transport in isolated bacterial membrane vesicles. X. Inactivation of D-lactate dehydrogenase and D-lactate dehydrogenase-coupled transport in Escherichia coli membrane vesicles by an acetylenic substrate.
    Walsh CT; Abeles RH; Kaback HR
    J Biol Chem; 1972 Dec; 247(24):7858-63. PubMed ID: 4565667
    [No Abstract]   [Full Text] [Related]  

  • 6. Active transport in isolated bacterial membrane vesicles. V. The transport of amino acids by membrane vesicles prepared from Staphylococcus aureus.
    Short SA; White DC; Kaback HR
    J Biol Chem; 1972 Jan; 247(1):298-304. PubMed ID: 4553437
    [No Abstract]   [Full Text] [Related]  

  • 7. Mechanisms of active transport in isolated bacterial membrane vesicles. 8. Valinomycin-induced rubidium transport.
    Lombardi FJ; Reeves JP; Kaback HR
    J Biol Chem; 1973 May; 248(10):3551-65. PubMed ID: 4573982
    [No Abstract]   [Full Text] [Related]  

  • 8. Mechanisms of active transport in isolated membrane vesicles. IV. Galactose transport by isolated membrane vesicles from Escherichia coli.
    Kerwar GK; Gordon AS; Kaback HR
    J Biol Chem; 1972 Jan; 247(1):291-7. PubMed ID: 4623127
    [No Abstract]   [Full Text] [Related]  

  • 9. Evaluation of the chemiosmotic interpretation of active transport in bacterial membrane vesicles.
    Lombardi FJ; Reeves JP; Short SA; Kaback HR
    Ann N Y Acad Sci; 1974 Feb; 227():312-27. PubMed ID: 4363926
    [No Abstract]   [Full Text] [Related]  

  • 10. Energetics and molecular biology of active transport in bacterial membrane vesicles.
    Kaback HR; Ramos S; Robertson DE; Stroobant P; Tokuda H
    J Supramol Struct; 1977; 7(3-4):443-61. PubMed ID: 357844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of sugars and amino acids in bacteria. XI. Mechanism of energy coupling reaction for the concentrative uptake of proline by Escherichia coli membrane vesicles.
    Kasahara M; Anraku Y
    J Biochem; 1974 Nov; 76(5):977-83. PubMed ID: 4616034
    [No Abstract]   [Full Text] [Related]  

  • 12. Mechanisms of active transport in isolated membrane vesicles. 2. The coupling of reduced phenazine methosulfate to the concentrative uptake of beta-galactosides and amino acids.
    Konings WN; Barnes EM; Kaback HR
    J Biol Chem; 1971 Oct; 246(19):5857-61. PubMed ID: 4331061
    [No Abstract]   [Full Text] [Related]  

  • 13. Mechanisms of active transport in isolated membrane vesicles. I. The site of energy coupling between D-lactic dehydrogenase and beta-galactoside transport in Escherichia coli membrane vesicles.
    Barnes EM; Kaback HR
    J Biol Chem; 1971 Sep; 246(17):5518-22. PubMed ID: 4330922
    [No Abstract]   [Full Text] [Related]  

  • 14. Mutants of Salmonella typhimurium and Escherichia coli pleiotropically defective in active transport.
    Hong JS; Kaback HR
    Proc Natl Acad Sci U S A; 1972 Nov; 69(11):3336-40. PubMed ID: 4343963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport across isolated bacterial cytoplasmic membranes.
    Kaback HR
    Biochim Biophys Acta; 1972 Aug; 265(3):367-416. PubMed ID: 4581579
    [No Abstract]   [Full Text] [Related]  

  • 16. The role of functional sulfhydryl groups in active transport in Escherichia coli membrane vesicles.
    Kaback HR; Patel L
    Biochemistry; 1978 May; 17(9):1640-6. PubMed ID: 350273
    [No Abstract]   [Full Text] [Related]  

  • 17. Reconstitution of D-lactate-dependent transport in membrane vesicles from a D-lactate dehydrogenase mutant of Escherichia coli.
    Reeves JP; Hong JS; Kaback HR
    Proc Natl Acad Sci U S A; 1973 Jul; 70(7):1917-21. PubMed ID: 4579004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoinactivation of the beta-galactoside transport system in Escherichia coli membrane vesicles with an impermeant azidophenylgalactoside.
    Rudnick G; Kaback HR
    J Biol Chem; 1975 Sep; 250(17):6847-51. PubMed ID: 1099095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane transport as a potential target for antibiotic action.
    Walsh CT; Kaback HR
    Ann N Y Acad Sci; 1974 May; 235(0):519-41. PubMed ID: 4604751
    [No Abstract]   [Full Text] [Related]  

  • 20. Impairment and restoration of the energized state in membrane vesicles of a mutant of Escherichia coli lacking adenosine triphosphatase.
    Altendorf K; Harold FM; Simoni RD
    J Biol Chem; 1974 Jul; 249(14):4587-93. PubMed ID: 4276462
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.