These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 45944)

  • 21. Anatomical relationships between the ventral mesencephalic tegmentum--a 10 region and the locus coeruleus as demonstrated by anterograde and retrograde tracing techniques.
    Simon H; Le Moal M; Stinus L; Calas A
    J Neural Transm; 1979; 44(1-2):77-86. PubMed ID: 220380
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Different functions of rat's pedunculopontine tegmental nucleus are reflected in cortical EEG.
    Bringmann A
    Neuroreport; 1995 Oct; 6(15):2065-8. PubMed ID: 8580441
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Excitatory projections between the midbrain tegmental area and the pontine reticular formation of the rat.
    Miller CA; Sinnamon HM
    Brain Res; 1980 Jun; 191(2):533-7. PubMed ID: 6247018
    [No Abstract]   [Full Text] [Related]  

  • 24. Electrical stimulation of mesencephalic cell groups (A9-A10) produces monosynaptic excitatory potentials in rat frontal cortex.
    Mercuri N; Calabresi P; Stanzione P; Bernardi G
    Brain Res; 1985 Jul; 338(1):192-5. PubMed ID: 4027589
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Behavioral effects of a lesion in the ventral mesencephalic tegmentum: evidence for involvement of A10 dopaminergic neurons.
    Le Moal M; Stinus L; Simon H; Tassin JP; Thierry AM; Blanc G; Glowinski J; Cardo B
    Adv Biochem Psychopharmacol; 1977; 16():237-45. PubMed ID: 883544
    [No Abstract]   [Full Text] [Related]  

  • 26. Excitation of the brain stem pedunculopontine tegmentum cholinergic cells induces wakefulness and REM sleep.
    Datta S; Siwek DF
    J Neurophysiol; 1997 Jun; 77(6):2975-88. PubMed ID: 9212250
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unitary characteristics of presumptive cholinergic tegmental neurons during the sleep-waking cycle in freely moving cats.
    el Mansari M; Sakai K; Jouvet M
    Exp Brain Res; 1989; 76(3):519-29. PubMed ID: 2551709
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrical activity of the cingulate cortex. I. Generating mechanisms and relations to behavior.
    Leung LW; Borst JG
    Brain Res; 1987 Mar; 407(1):68-80. PubMed ID: 3580857
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A peculiar rhythmic EEG activity from ventrobasal thalamus during paradoxical sleep in man.
    Velasco M; Velasco F; Cepeda C
    Electroencephalogr Clin Neurophysiol; 1979 Aug; 47(2):119-25. PubMed ID: 95705
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single cell activity patterns of pedunculopontine tegmentum neurons across the sleep-wake cycle in the freely moving rats.
    Datta S; Siwek DF
    J Neurosci Res; 2002 Nov; 70(4):611-21. PubMed ID: 12404515
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Augmentation of ventral tegmental area stimulation-induced feeding by both stimulation and lesion of the contralateral ventral tegmental area in the rat.
    Maliszewska-Scisło M; Trojniar W
    Acta Neurobiol Exp (Wars); 1999; 59(4):287-93. PubMed ID: 10645633
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theta-rhythmic drive between medial septum and hippocampus in slow-wave sleep and microarousal: a Granger causality analysis.
    Kang D; Ding M; Topchiy I; Shifflett L; Kocsis B
    J Neurophysiol; 2015 Nov; 114(5):2797-803. PubMed ID: 26354315
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Asymmetry of the electroencephalographic manifestations of REM and slow-wave sleep in the cat].
    Garaev MA; Liubimov NN
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1987; 37(3):428-38. PubMed ID: 3630376
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The fasciculus retroflexus controls the integrity of REM sleep by supporting the generation of hippocampal theta rhythm and rapid eye movements in rats.
    Valjakka A; Vartiainen J; Tuomisto L; Tuomisto JT; Olkkonen H; Airaksinen MM
    Brain Res Bull; 1998 Sep; 47(2):171-84. PubMed ID: 9820735
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nucleus basalis magnocellularis and pedunculopontine tegmental nucleus: control of the slow EEG waves in rats.
    Kleiner S; Bringmann A
    Arch Ital Biol; 1996 Mar; 134(2):153-67. PubMed ID: 8741223
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrophysiological evidence for non-dopaminergic mesocortical and mesolimbic neurons in the rat.
    Thierry AM; Deniau JM; Herve D; Chevalier G
    Brain Res; 1980 Nov; 201(1):210-4. PubMed ID: 7417833
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alternation behavior, spatial discrimination, and reversal after electrocoagulation of the ventral mesencephalic tegmentum in the rat.
    Galey D; Jaffard R; Le Moal M
    Behav Neural Biol; 1979 May; 26(1):81-8. PubMed ID: 475719
    [No Abstract]   [Full Text] [Related]  

  • 38. Effects of electrical stimulation of the mesencephalon and diencephalon on the paradoxical phase of sleep.
    Oniani TN; Koridze MG; Kavkasidze MG; Gvetadze LB
    Acta Neurobiol Exp (Wars); 1975; 35(4):323-42. PubMed ID: 171920
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activity of mesencephalic dopamine and non-dopamine neurons across stages of sleep and walking in the rat.
    Miller JD; Farber J; Gatz P; Roffwarg H; German DC
    Brain Res; 1983 Aug; 273(1):133-41. PubMed ID: 6616218
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Radiofrequency lesion of the ventral mesencephalic tegmentum: neurological and behavioral considerations.
    LeMoal M; Stinus L; Galey D
    Exp Neurol; 1976 Mar; 50(3):521-35. PubMed ID: 943305
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.