These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 4594852)
1. Investigation of the base-pairing structure of the anticodon hairpin from E. coli initiator tRNA by high-resolution nmr. Wong KL; Kearns DR Biopolymers; 1974; 13(2):371-80. PubMed ID: 4594852 [No Abstract] [Full Text] [Related]
2. Anticodon sequence mutants of Escherichia coli initiator tRNA: effects of overproduction of aminoacyl-tRNA synthetases, methionyl-tRNA formyltransferase, and initiation factor 2 on activity in initiation. Mayer C; Köhrer C; Kenny E; Prusko C; RajBhandary UL Biochemistry; 2003 May; 42(17):4787-99. PubMed ID: 12718519 [TBL] [Abstract][Full Text] [Related]
3. Investigation of the thermal unfolding of secondary and tertiary structure in E. coli tRNAfMet by high-resolution Nmr. Wong KL; Wong YP; Kearns DR Biopolymers; 1975 Apr; 14(4):749-62. PubMed ID: 1098699 [No Abstract] [Full Text] [Related]
4. Base pairing within the psi32,psi39-modified anticodon arm of Escherichia coli tRNA(Phe). Tworowska I; Nikonowicz EP J Am Chem Soc; 2006 Dec; 128(49):15570-1. PubMed ID: 17147349 [TBL] [Abstract][Full Text] [Related]
5. Solution conformations of unmodified and A(37)N(6)-dimethylallyl modified anticodon stem-loops of Escherichia coli tRNA(Phe). Cabello-Villegas J; Winkler ME; Nikonowicz EP J Mol Biol; 2002 Jun; 319(5):1015-34. PubMed ID: 12079344 [TBL] [Abstract][Full Text] [Related]
6. Transfer RNA recognition by the Escherichia coli delta2-isopentenyl-pyrophosphate:tRNA delta2-isopentenyl transferase: dependence on the anticodon arm structure. Motorin Y; Bec G; Tewari R; Grosjean H RNA; 1997 Jul; 3(7):721-33. PubMed ID: 9214656 [TBL] [Abstract][Full Text] [Related]
8. Anticodon domain modifications contribute order to tRNA for ribosome-mediated codon binding. Vendeix FA; Dziergowska A; Gustilo EM; Graham WD; Sproat B; Malkiewicz A; Agris PF Biochemistry; 2008 Jun; 47(23):6117-29. PubMed ID: 18473483 [TBL] [Abstract][Full Text] [Related]
9. Structure and function of the conserved 690 hairpin in Escherichia coli 16 S ribosomal RNA. II. NMR solution structure. Morosyuk SV; Cunningham PR; SantaLucia J J Mol Biol; 2001 Mar; 307(1):197-211. PubMed ID: 11243814 [TBL] [Abstract][Full Text] [Related]
10. The recognition of E. coli glutamine tRNA by glutaminyl-tRNA synthetase. Rogers MJ; Weygand-Durasević I; Schwob E; Sherman JM; Rogers KC; Thomann HU; Sylvers LA; Ohtsuka E; Inokuchi H; Söll D Nucleic Acids Symp Ser; 1993; (29):211-3. PubMed ID: 7504247 [TBL] [Abstract][Full Text] [Related]
11. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases. Sherlin LD; Bullock TL; Newberry KJ; Lipman RS; Hou YM; Beijer B; Sproat BS; Perona JJ J Mol Biol; 2000 Jun; 299(2):431-46. PubMed ID: 10860750 [TBL] [Abstract][Full Text] [Related]
12. Structural effects of hypermodified nucleosides in the Escherichia coli and human tRNALys anticodon loop: the effect of nucleosides s2U, mcm5U, mcm5s2U, mnm5s2U, t6A, and ms2t6A. Durant PC; Bajji AC; Sundaram M; Kumar RK; Davis DR Biochemistry; 2005 Jun; 44(22):8078-89. PubMed ID: 15924427 [TBL] [Abstract][Full Text] [Related]
13. Recognition of tRNAs by aminoacyl-tRNA synthetases: Escherichia coli tRNAMet and E. coli methionyl-tRNA synthetase. Schulman LH; Pelka H Fed Proc; 1984 Dec; 43(15):2977-80. PubMed ID: 6389181 [TBL] [Abstract][Full Text] [Related]
14. Metal ion stabilization of the U-turn of the A37 N6-dimethylallyl-modified anticodon stem-loop of Escherichia coli tRNAPhe. Cabello-Villegas J; Tworowska I; Nikonowicz EP Biochemistry; 2004 Jan; 43(1):55-66. PubMed ID: 14705931 [TBL] [Abstract][Full Text] [Related]
15. Structure of a hexanucleotide RNA hairpin loop conserved in ribosomal RNAs. Huang S; Wang YX; Draper DE J Mol Biol; 1996 May; 258(2):308-21. PubMed ID: 8627628 [TBL] [Abstract][Full Text] [Related]
16. The effect of pseudouridine and pH on the structure and dynamics of the anticodon stem-loop of tRNA(Lys,3). Durant PC; Davis DR Nucleic Acids Symp Ser; 1997; (36):56-7. PubMed ID: 9478205 [TBL] [Abstract][Full Text] [Related]
17. High-resolution NMR study of yeast tRNA Leu CUA and the native and denatured conformers of yeast tRNA Leu UUG. Rordorf BF; Kearns DR; Hawkins E; Chang SH Biopolymers; 1976 Feb; 15(2):325-336. PubMed ID: 764895 [No Abstract] [Full Text] [Related]
18. Structural studies of the tRNA domain of tmRNA. Stagg SM; Frazer-Abel AA; Hagerman PJ; Harvey SC J Mol Biol; 2001 Jun; 309(3):727-35. PubMed ID: 11397092 [TBL] [Abstract][Full Text] [Related]
19. Structural basis of translational control by Escherichia coli threonyl tRNA synthetase. Torres-Larios A; Dock-Bregeon AC; Romby P; Rees B; Sankaranarayanan R; Caillet J; Springer M; Ehresmann C; Ehresmann B; Moras D Nat Struct Biol; 2002 May; 9(5):343-7. PubMed ID: 11953757 [TBL] [Abstract][Full Text] [Related]
20. tRNA structure and ribosomal function. I. tRNA nucleotide 27-43 mutations enhance first position wobble. Schultz DW; Yarus M J Mol Biol; 1994 Feb; 235(5):1381-94. PubMed ID: 8107080 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]