These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 4595959)
1. Compound inhibitory to Clostridium botulinum type E produced by a Moraxella species. Kwan PL; Lee JS Appl Microbiol; 1974 Feb; 27(2):329-32. PubMed ID: 4595959 [TBL] [Abstract][Full Text] [Related]
2. Inhibitory effect of combinations of heat treatment, pH, and sodium chloride on a growth from spores of nonproteolytic Clostridium botulinum at refrigeration temperature. Graham AF; Mason DR; Peck MW Appl Environ Microbiol; 1996 Jul; 62(7):2664-8. PubMed ID: 8779606 [TBL] [Abstract][Full Text] [Related]
3. Minimal growth temperature, sodium chloride tolerance, pH sensitivity, and toxin production of marine and terrestrial strains of Clostridium botulinum type C. Segner WP; Schmidt CF; Boltz JK Appl Microbiol; 1971 Dec; 22(6):1025-9. PubMed ID: 4944801 [TBL] [Abstract][Full Text] [Related]
4. Heat injury and recovery of vegetative cells of Clostridium botulinum type E. Pierson MD; Payne SL; Ades GL Appl Microbiol; 1974 Feb; 27(2):425-6. PubMed ID: 4595963 [TBL] [Abstract][Full Text] [Related]
5. Multiple modes of inhibition of spore germination and outgrowth by reduced pH and sorbate. Blocher JC; Busta FF J Appl Bacteriol; 1985 Nov; 59(5):469-78. PubMed ID: 3936834 [TBL] [Abstract][Full Text] [Related]
6. The germination requirements of spores of Clostridium botulinum type E. Ando Y Jpn J Microbiol; 1971 Nov; 15(6):515-25. PubMed ID: 4946422 [No Abstract] [Full Text] [Related]
7. Comparative studies of an asporogenic mutant and a wild type strain of Clostridium botulinum type E 1 . Emeruwa AC; Hawirko RZ Can J Microbiol; 1972 Jan; 18(1):29-34. PubMed ID: 4551615 [No Abstract] [Full Text] [Related]
8. Predictive model of the effect of temperature, pH and sodium chloride on growth from spores of non-proteolytic Clostridium botulinum. Graham AF; Mason DR; Peck MW Int J Food Microbiol; 1996 Aug; 31(1-3):69-85. PubMed ID: 8880298 [TBL] [Abstract][Full Text] [Related]
9. Modeling the germination kinetics of clostridium botulinum 56A spores as affected by temperature, pH, and sodium chloride. Chea FP; Chen Y; Montville TJ; Schaffner DW J Food Prot; 2000 Aug; 63(8):1071-9. PubMed ID: 10945583 [TBL] [Abstract][Full Text] [Related]
10. Effect of lysozyne on the recovery of heated Clostridium botulinum spores. Alderton G; Chen JK; Ito KA Appl Microbiol; 1974 Mar; 27(3):613-5. PubMed ID: 4596393 [TBL] [Abstract][Full Text] [Related]
11. Antagonistic effect on Clostridium botulinum type E by organisms resembling it. Kautter DA; Harmon SM; Lynt RK; Lilly T Appl Microbiol; 1966 Jul; 14(4):616-22. PubMed ID: 4288828 [TBL] [Abstract][Full Text] [Related]
12. Contrasting effects of heat treatment and incubation temperature on germination and outgrowth of individual spores of nonproteolytic Clostridium botulinum bacteria. Stringer SC; Webb MD; Peck MW Appl Environ Microbiol; 2009 May; 75(9):2712-9. PubMed ID: 19270146 [TBL] [Abstract][Full Text] [Related]
13. Effects of potassium sorbate and other antibotulinal agents on germination and outgrowth of Clostridium botulinum type E spores in microcultures. Seward RA; Deibel RH; Lindsay RC Appl Environ Microbiol; 1982 Nov; 44(5):1212-21. PubMed ID: 6758699 [TBL] [Abstract][Full Text] [Related]
14. Effect of sodium chloride and pH on the outgrowth of spores of type E Clostridium botulinum at optimal and suboptimal temperatures. Segner WP; Schmidt CF; Boltz JK Appl Microbiol; 1966 Jan; 14(1):49-54. PubMed ID: 5330680 [TBL] [Abstract][Full Text] [Related]
15. Germination of spores from Clostridium botulinum B-aphis and Ba410. Montville TJ; Jones SB; Conway LK; Sapers GM Appl Environ Microbiol; 1985 Oct; 50(4):795-800. PubMed ID: 3909964 [TBL] [Abstract][Full Text] [Related]
16. Factors influencing Clostridium botulinum spore germination, outgrowth, and toxin formation in acidified media. Wong DM; Young-Perkins KE; Merson RL Appl Environ Microbiol; 1988 Jun; 54(6):1446-50. PubMed ID: 3046489 [TBL] [Abstract][Full Text] [Related]
17. Influence of transition metals added during sporulation on heat resistance of Clostridium botulinum 113B spores. Kihm DJ; Hutton MT; Hanlin JH; Johnson EA Appl Environ Microbiol; 1990 Mar; 56(3):681-5. PubMed ID: 2180370 [TBL] [Abstract][Full Text] [Related]
18. Germination of heat- and alkali-altered spores of Clostridium perfringens type A by lysozyme and an initiation protein. Duncan CL; Labbe RG; Reich RR J Bacteriol; 1972 Feb; 109(2):550-9. PubMed ID: 4333607 [TBL] [Abstract][Full Text] [Related]
19. Effect of acid and salt concentration in fresh-pack pickles on the growth of Clostridium botulinum spores. Ito KA; Chen JK; Lerke PA; Seeger ML; Unverferth JA Appl Environ Microbiol; 1976 Jul; 32(1):121-4. PubMed ID: 9898 [TBL] [Abstract][Full Text] [Related]
20. Effect of plating medium on heat activation requirement of Clostridium botulinum spores. Montville TJ Appl Environ Microbiol; 1981 Oct; 42(4):734-6. PubMed ID: 7039510 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]