These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 4595959)

  • 21. Effect of plating medium on heat activation requirement of Clostridium botulinum spores.
    Montville TJ
    Appl Environ Microbiol; 1981 Oct; 42(4):734-6. PubMed ID: 7039510
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Growth characteristics of type E Clostridium botulinum in the temperature range of 34 to 50 degrees F. TID-24781.
    TID Rep; 1966 Jan; ():1-57. PubMed ID: 4905221
    [No Abstract]   [Full Text] [Related]  

  • 23. Heat resistance of spores of marine and terrestrial strains of Clostridium botulinum type C.
    Segner WP; Schmidt CF
    Appl Microbiol; 1971 Dec; 22(6):1030-3. PubMed ID: 4944802
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production of types A and B spores of Clostridium botulinum by the biphasic method: effect on spore population, radiation resistance, and toxigenicity.
    Anellis A; Berkowitz D; Kemper D; Rowley DB
    Appl Microbiol; 1972 Apr; 23(4):734-9. PubMed ID: 4111814
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Failure of nisin to inhibit outgrowth of Clostridium botulinum in a model cured meat system.
    Rayman K; Malik N; Hurst A
    Appl Environ Microbiol; 1983 Dec; 46(6):1450-2. PubMed ID: 6362566
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemical manipulation of the heat resistance of Clostridium botulinum spores.
    Alderton G; Ito KA; Chen JK
    Appl Environ Microbiol; 1976 Apr; 31(4):492-8. PubMed ID: 5056
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploiting the combined effects of high pressure and moderate heat with nisin on inactivation of Clostridium botulinum spores.
    Gao YL; Ju XR
    J Microbiol Methods; 2008 Jan; 72(1):20-8. PubMed ID: 18068839
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Variability in spore germination response by strains of proteolytic Clostridium botulinum types A, B and F.
    Alberto F; Broussolle V; Mason DR; Carlin F; Peck MW
    Lett Appl Microbiol; 2003; 36(1):41-5. PubMed ID: 12485340
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of fatty acid composition, spore germination, and thermal resistance in a nisin-resistant mutant of Clostridium botulinum 169B and in the wild-type strain.
    Mazzotta AS; Montville TJ
    Appl Environ Microbiol; 1999 Feb; 65(2):659-64. PubMed ID: 9925597
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanisms of sorbate inhibition of Bacillus cereus T and Clostridium botulinum 62A spore germination.
    Smoot LA; Pierson MD
    Appl Environ Microbiol; 1981 Sep; 42(3):477-83. PubMed ID: 6794451
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimal spore germination in Clostridium botulinum ATCC 3502 requires the presence of functional copies of SleB and YpeB, but not CwlJ.
    Meaney CA; Cartman ST; McClure PJ; Minton NP
    Anaerobe; 2015 Aug; 34():86-93. PubMed ID: 25937262
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of pH and NaCl on growth from spores of non-proteolytic Clostridium botulinum at chill temperature.
    Graham AF; Mason DR; Maxwell FJ; Peck MW
    Lett Appl Microbiol; 1997 Feb; 24(2):95-100. PubMed ID: 9081311
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hypochlorite injury of Clostridium botulinum spores alters germination responses.
    Foegeding PM; Busta FF
    Appl Environ Microbiol; 1983 Apr; 45(4):1360-8. PubMed ID: 6305267
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Factors affecting the germination of spores of Clostridium botulinum type E.
    Ando Y; Iida H
    Jpn J Microbiol; 1970 Sep; 14(5):361-70. PubMed ID: 4919766
    [No Abstract]   [Full Text] [Related]  

  • 35. Causes of variation in botulinal inhibition in perishable canned cured meat.
    Tompkin RB; Christiansen LN; Shaparis AB
    Appl Environ Microbiol; 1978 May; 35(5):886-9. PubMed ID: 350156
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interrelationship of heat and relative humidity in the destruction of Clostridium botulinum type E spores on whitefish chubs.
    Pace PJ; Krumbiegel ER; Wisniewski HJ
    Appl Microbiol; 1972 Apr; 23(4):750-7. PubMed ID: 4553143
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of media, additives, and incubation conditions on the recovery of high pressure and heat-injured Clostridium botulinum spores.
    Reddy NR; Tetzloff RC; Skinner GE
    Food Microbiol; 2010 Aug; 27(5):613-7. PubMed ID: 20510779
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Growth from spores of nonproteolytic Clostridium botulinum in heat-treated vegetable juice.
    Stringer SC; Haque N; Peck MW
    Appl Environ Microbiol; 1999 May; 65(5):2136-42. PubMed ID: 10224012
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Growth and toxin production by Clostridium botulinum in moldy tomato juice.
    Huhtanen CN; Naghski J; Custer CS; Russell RW
    Appl Environ Microbiol; 1976 Nov; 32(5):711-5. PubMed ID: 10844
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Purification and properties of boticin P produced by Clostridium botulinum.
    Lau AH; Hawirko RZ; Chow CT
    Can J Microbiol; 1974 Mar; 20(3):385-90. PubMed ID: 4132521
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.