These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 4595963)

  • 1. Heat injury and recovery of vegetative cells of Clostridium botulinum type E.
    Pierson MD; Payne SL; Ades GL
    Appl Microbiol; 1974 Feb; 27(2):425-6. PubMed ID: 4595963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimal growth temperature, sodium chloride tolerance, pH sensitivity, and toxin production of marine and terrestrial strains of Clostridium botulinum type C.
    Segner WP; Schmidt CF; Boltz JK
    Appl Microbiol; 1971 Dec; 22(6):1025-9. PubMed ID: 4944801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of media, additives, and incubation conditions on the recovery of high pressure and heat-injured Clostridium botulinum spores.
    Reddy NR; Tetzloff RC; Skinner GE
    Food Microbiol; 2010 Aug; 27(5):613-7. PubMed ID: 20510779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat resistance of spores of marine and terrestrial strains of Clostridium botulinum type C.
    Segner WP; Schmidt CF
    Appl Microbiol; 1971 Dec; 22(6):1030-3. PubMed ID: 4944802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitory effect of combinations of heat treatment, pH, and sodium chloride on a growth from spores of nonproteolytic Clostridium botulinum at refrigeration temperature.
    Graham AF; Mason DR; Peck MW
    Appl Environ Microbiol; 1996 Jul; 62(7):2664-8. PubMed ID: 8779606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of lysozyne on the recovery of heated Clostridium botulinum spores.
    Alderton G; Chen JK; Ito KA
    Appl Microbiol; 1974 Mar; 27(3):613-5. PubMed ID: 4596393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The synergic interaction between environmental factors (pH and NaCl) and the physiological state (vegetative cells and spores) provides new possibilities for optimizing processes to manage risk of C. sporogenes spoilage.
    Boix E; Couvert O; André S; Coroller L
    Food Microbiol; 2021 Dec; 100():103832. PubMed ID: 34416948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery of spores of Clostridium botulinum in yeast extract agar and pork infusion agar after heat treatment.
    Odlaug TE; Pflug IJ
    Appl Environ Microbiol; 1977 Oct; 34(4):377-81. PubMed ID: 335970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth characteristics of type E Clostridium botulinum in the temperature range of 34 to 50 degrees F. TID-24781.
    TID Rep; 1966 Jan; ():1-57. PubMed ID: 4905221
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of plating medium on heat activation requirement of Clostridium botulinum spores.
    Montville TJ
    Appl Environ Microbiol; 1981 Oct; 42(4):734-6. PubMed ID: 7039510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of types A and B spores of Clostridium botulinum by the biphasic method: effect on spore population, radiation resistance, and toxigenicity.
    Anellis A; Berkowitz D; Kemper D; Rowley DB
    Appl Microbiol; 1972 Apr; 23(4):734-9. PubMed ID: 4111814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of intracellular glucan in endogenous fermentation and spore maturation in Clostridium botulinum type E.
    Strasdine GA
    Can J Microbiol; 1972 Feb; 18(2):211-7. PubMed ID: 4553163
    [No Abstract]   [Full Text] [Related]  

  • 13. Modeling the germination kinetics of clostridium botulinum 56A spores as affected by temperature, pH, and sodium chloride.
    Chea FP; Chen Y; Montville TJ; Schaffner DW
    J Food Prot; 2000 Aug; 63(8):1071-9. PubMed ID: 10945583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compound inhibitory to Clostridium botulinum type E produced by a Moraxella species.
    Kwan PL; Lee JS
    Appl Microbiol; 1974 Feb; 27(2):329-32. PubMed ID: 4595959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clostridium perfringens. I. Sporulation in a biphasic glucose-ion-exchange resin medium.
    Clifford WJ; Anellis A
    Appl Microbiol; 1971 Nov; 22(5):856-61. PubMed ID: 4332043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative studies of an asporogenic mutant and a wild type strain of Clostridium botulinum type E 1 .
    Emeruwa AC; Hawirko RZ
    Can J Microbiol; 1972 Jan; 18(1):29-34. PubMed ID: 4551615
    [No Abstract]   [Full Text] [Related]  

  • 17. Effect of heat treatment on survival of, and growth from, spores of nonproteolytic Clostridium botulinum at refrigeration temperatures.
    Peck MW; Lund BM; Fairbairn DA; Kaspersson AS; Undeland PC
    Appl Environ Microbiol; 1995 May; 61(5):1780-5. PubMed ID: 7646016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictive model of the effect of temperature, pH and sodium chloride on growth from spores of non-proteolytic Clostridium botulinum.
    Graham AF; Mason DR; Peck MW
    Int J Food Microbiol; 1996 Aug; 31(1-3):69-85. PubMed ID: 8880298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. "Phoenix phenomenon" in the growth of Clostridium perfringens.
    Shoemaker SP; Pierson MD
    Appl Environ Microbiol; 1976 Dec; 32(6):803-7. PubMed ID: 188384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sporulation of Clostridium putrefaciens and the resistance of the spores to heat, gamma-radiation and curing salts.
    Roberts TA; Derrick CM
    J Appl Bacteriol; 1975 Feb; 38(1):33-7. PubMed ID: 234933
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.