These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 4596148)
1. Purification of chicken liver seryl transfer ribonucleic acid by complex formation with elongation factor EF-Tu:GTP. A general micromethod of aminoacyl transfer ribonucleic acid purification. Klyde BJ; Bernfield MR Biochemistry; 1973 Sep; 12(19):3752-7. PubMed ID: 4596148 [No Abstract] [Full Text] [Related]
2. A general method for the separation of isoaccepting transfer ribonucleic acids: purification of five leucine transfer ribonucleic acids from Escherichia coli. Holladay DW; Pearson RL; Kelmers AD Biochim Biophys Acta; 1971 Jul; 240(4):541-53. PubMed ID: 4941741 [No Abstract] [Full Text] [Related]
3. Structural requirements for recognition of Escherichia coli initiator and non-initiator transfer ribonucleic acids by bacterial T factor. Schulman LH; Pelka H; Sundari RM J Biol Chem; 1974 Nov; 249(22):7102-10. PubMed ID: 4373457 [No Abstract] [Full Text] [Related]
4. Properties of multiple serine-specific transfer RNAs (brewer's yeast) derived from countercurrent distribution. Feldmann H Biochim Biophys Acta; 1972 Sep; 277(3):548-55. PubMed ID: 4341779 [No Abstract] [Full Text] [Related]
5. Preparation of crude transfer RNA and chromatographic purification of five transfer RNAs from calf liver. Pearson RL; Hancher CW; Weiss JF; Holladay DW; Kelmers AD Biochim Biophys Acta; 1973 Jan; 294(2):236-49. PubMed ID: 4691883 [No Abstract] [Full Text] [Related]
6. Preparation of crude transfer RNA and chromatography purification of five transfer RNAs from calf liver. Pearson RL; Hancher CW; Weiss JF; Holladay DW; Kelmers AD Biochim Biophys Acta; 1973 Jan; 294(1):236-49. PubMed ID: 4736374 [No Abstract] [Full Text] [Related]
7. The binding of aminoacyl-transfer ribonucleic acid to wheat ribosomes. Allende JE; Tarragó A; Monasterio O; Litvak S; Gatica M; Ojeda JM; Matamala M Biochem Soc Symp; 1973; (38):77-96. PubMed ID: 4807464 [No Abstract] [Full Text] [Related]
8. Kirromycin, an inhibitor of protein biosynthesis that acts on elongation factor Tu. Wolf H; Chinali G; Parmeggiani A Proc Natl Acad Sci U S A; 1974 Dec; 71(12):4910-4. PubMed ID: 4373734 [TBL] [Abstract][Full Text] [Related]
9. Eucaryotic methionyl transfer ribonucleic acid. Effects of aminoacylation and of formylation on chromatographic behavior. Samuel CE; McIlroy PJ; Rabinowitz JC Biochemistry; 1973 Sep; 12(19):3609-15. PubMed ID: 4596144 [No Abstract] [Full Text] [Related]
10. Columns for rapid chromatographic separation of small amounts of tracer-labeled transfer ribonucleic acids. Kelmers AD; Heatherly DE Anal Biochem; 1971 Dec; 44(2):486-95. PubMed ID: 4943341 [No Abstract] [Full Text] [Related]
11. Peptide chain elongation; indications for the binding of an amino acid polymerization factor, guanosine 5'-triphosphate--aminoacyl transfer ribonucleic acid complex to the messenger-ribosome complex. Skoultchi A; Ono Y; Waterson J; Lengyel P Biochemistry; 1970 Feb; 9(3):508-14. PubMed ID: 4906323 [No Abstract] [Full Text] [Related]
12. Elongation factor Tu and the aminoacyl-tRNA-EFTu-GTP complex. Miller DL; Weissbach H Methods Enzymol; 1974; 30():219-32. PubMed ID: 4604425 [No Abstract] [Full Text] [Related]
13. Inactivation of T u factor-guanosine triphosphate recognition and ribosome-binding ability by terminal oxidation-reduction of yeast phenylalanine transfer ribonucleic acid. Ofengand J; Chen CM J Biol Chem; 1972 Apr; 247(7):2049-58. PubMed ID: 4335860 [No Abstract] [Full Text] [Related]
14. Intermediate reactions in the binding of aminoacyl-transfer ribonucleic acid to rat liver ribosomes. The role of guanosine triphosphate. Hradec J Biochem J; 1972 Feb; 126(4):933-43. PubMed ID: 5073244 [TBL] [Abstract][Full Text] [Related]
15. Studies on the binding of bacterial elongation factors EF Tu and EF G to ribosomes. Beres L; Lucas-Lenard J Arch Biochem Biophys; 1973 Feb; 154(2):555-62. PubMed ID: 4632421 [No Abstract] [Full Text] [Related]
16. Effect of the presence of a pCpCpCpA 3'terminus in Phe-tRNA Phe yeast on the interaction with elongation factors and with the poly U-ribosome system. Thang MN; Dondon L; Thang DC; Rether B FEBS Lett; 1972 Oct; 26(1):145-50. PubMed ID: 4564655 [No Abstract] [Full Text] [Related]
17. Purification of five leucine transfer ribonucleic acid species from Escherichia coli and their acylation by heterologous leucyl-transfer ribonucleic acid synthetase. Blank HU; Söll D J Biol Chem; 1971 Aug; 246(16):4947-50. PubMed ID: 4936719 [No Abstract] [Full Text] [Related]
18. Studies on the fluorescence of the Y base of yeast phenylalanine transfer ribonucleic acid. Effect of pH, aminoacylation, and interaction with elongation factor Tu. Beres L; Lucas-Lenard J Biochemistry; 1973 Sep; 12(20):3998-4002. PubMed ID: 4583317 [No Abstract] [Full Text] [Related]
19. Dissociation of aminoacyl tRNA from the complex of EF-Tu--GTP--aminoacyl tRNA by extracts of Escherichia coli. Furano AV Biochem Biophys Res Commun; 1976 May; 76(2):309-16. PubMed ID: 800338 [No Abstract] [Full Text] [Related]
20. Specificity of rat liver lysine transfer ribonucleic acid for codon recognition. Liu LP; Ortwerth BJ Biochemistry; 1972 Jan; 11(1):12-7. PubMed ID: 4550553 [No Abstract] [Full Text] [Related] [Next] [New Search]