BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 4596148)

  • 1. Purification of chicken liver seryl transfer ribonucleic acid by complex formation with elongation factor EF-Tu:GTP. A general micromethod of aminoacyl transfer ribonucleic acid purification.
    Klyde BJ; Bernfield MR
    Biochemistry; 1973 Sep; 12(19):3752-7. PubMed ID: 4596148
    [No Abstract]   [Full Text] [Related]  

  • 2. A general method for the separation of isoaccepting transfer ribonucleic acids: purification of five leucine transfer ribonucleic acids from Escherichia coli.
    Holladay DW; Pearson RL; Kelmers AD
    Biochim Biophys Acta; 1971 Jul; 240(4):541-53. PubMed ID: 4941741
    [No Abstract]   [Full Text] [Related]  

  • 3. Structural requirements for recognition of Escherichia coli initiator and non-initiator transfer ribonucleic acids by bacterial T factor.
    Schulman LH; Pelka H; Sundari RM
    J Biol Chem; 1974 Nov; 249(22):7102-10. PubMed ID: 4373457
    [No Abstract]   [Full Text] [Related]  

  • 4. Properties of multiple serine-specific transfer RNAs (brewer's yeast) derived from countercurrent distribution.
    Feldmann H
    Biochim Biophys Acta; 1972 Sep; 277(3):548-55. PubMed ID: 4341779
    [No Abstract]   [Full Text] [Related]  

  • 5. Preparation of crude transfer RNA and chromatographic purification of five transfer RNAs from calf liver.
    Pearson RL; Hancher CW; Weiss JF; Holladay DW; Kelmers AD
    Biochim Biophys Acta; 1973 Jan; 294(2):236-49. PubMed ID: 4691883
    [No Abstract]   [Full Text] [Related]  

  • 6. Preparation of crude transfer RNA and chromatography purification of five transfer RNAs from calf liver.
    Pearson RL; Hancher CW; Weiss JF; Holladay DW; Kelmers AD
    Biochim Biophys Acta; 1973 Jan; 294(1):236-49. PubMed ID: 4736374
    [No Abstract]   [Full Text] [Related]  

  • 7. The binding of aminoacyl-transfer ribonucleic acid to wheat ribosomes.
    Allende JE; Tarragó A; Monasterio O; Litvak S; Gatica M; Ojeda JM; Matamala M
    Biochem Soc Symp; 1973; (38):77-96. PubMed ID: 4807464
    [No Abstract]   [Full Text] [Related]  

  • 8. Kirromycin, an inhibitor of protein biosynthesis that acts on elongation factor Tu.
    Wolf H; Chinali G; Parmeggiani A
    Proc Natl Acad Sci U S A; 1974 Dec; 71(12):4910-4. PubMed ID: 4373734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eucaryotic methionyl transfer ribonucleic acid. Effects of aminoacylation and of formylation on chromatographic behavior.
    Samuel CE; McIlroy PJ; Rabinowitz JC
    Biochemistry; 1973 Sep; 12(19):3609-15. PubMed ID: 4596144
    [No Abstract]   [Full Text] [Related]  

  • 10. Columns for rapid chromatographic separation of small amounts of tracer-labeled transfer ribonucleic acids.
    Kelmers AD; Heatherly DE
    Anal Biochem; 1971 Dec; 44(2):486-95. PubMed ID: 4943341
    [No Abstract]   [Full Text] [Related]  

  • 11. Peptide chain elongation; indications for the binding of an amino acid polymerization factor, guanosine 5'-triphosphate--aminoacyl transfer ribonucleic acid complex to the messenger-ribosome complex.
    Skoultchi A; Ono Y; Waterson J; Lengyel P
    Biochemistry; 1970 Feb; 9(3):508-14. PubMed ID: 4906323
    [No Abstract]   [Full Text] [Related]  

  • 12. Elongation factor Tu and the aminoacyl-tRNA-EFTu-GTP complex.
    Miller DL; Weissbach H
    Methods Enzymol; 1974; 30():219-32. PubMed ID: 4604425
    [No Abstract]   [Full Text] [Related]  

  • 13. Inactivation of T u factor-guanosine triphosphate recognition and ribosome-binding ability by terminal oxidation-reduction of yeast phenylalanine transfer ribonucleic acid.
    Ofengand J; Chen CM
    J Biol Chem; 1972 Apr; 247(7):2049-58. PubMed ID: 4335860
    [No Abstract]   [Full Text] [Related]  

  • 14. Intermediate reactions in the binding of aminoacyl-transfer ribonucleic acid to rat liver ribosomes. The role of guanosine triphosphate.
    Hradec J
    Biochem J; 1972 Feb; 126(4):933-43. PubMed ID: 5073244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the binding of bacterial elongation factors EF Tu and EF G to ribosomes.
    Beres L; Lucas-Lenard J
    Arch Biochem Biophys; 1973 Feb; 154(2):555-62. PubMed ID: 4632421
    [No Abstract]   [Full Text] [Related]  

  • 16. Effect of the presence of a pCpCpCpA 3'terminus in Phe-tRNA Phe yeast on the interaction with elongation factors and with the poly U-ribosome system.
    Thang MN; Dondon L; Thang DC; Rether B
    FEBS Lett; 1972 Oct; 26(1):145-50. PubMed ID: 4564655
    [No Abstract]   [Full Text] [Related]  

  • 17. Purification of five leucine transfer ribonucleic acid species from Escherichia coli and their acylation by heterologous leucyl-transfer ribonucleic acid synthetase.
    Blank HU; Söll D
    J Biol Chem; 1971 Aug; 246(16):4947-50. PubMed ID: 4936719
    [No Abstract]   [Full Text] [Related]  

  • 18. Studies on the fluorescence of the Y base of yeast phenylalanine transfer ribonucleic acid. Effect of pH, aminoacylation, and interaction with elongation factor Tu.
    Beres L; Lucas-Lenard J
    Biochemistry; 1973 Sep; 12(20):3998-4002. PubMed ID: 4583317
    [No Abstract]   [Full Text] [Related]  

  • 19. Dissociation of aminoacyl tRNA from the complex of EF-Tu--GTP--aminoacyl tRNA by extracts of Escherichia coli.
    Furano AV
    Biochem Biophys Res Commun; 1976 May; 76(2):309-16. PubMed ID: 800338
    [No Abstract]   [Full Text] [Related]  

  • 20. Specificity of rat liver lysine transfer ribonucleic acid for codon recognition.
    Liu LP; Ortwerth BJ
    Biochemistry; 1972 Jan; 11(1):12-7. PubMed ID: 4550553
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 15.