These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 4596393)
1. Effect of lysozyne on the recovery of heated Clostridium botulinum spores. Alderton G; Chen JK; Ito KA Appl Microbiol; 1974 Mar; 27(3):613-5. PubMed ID: 4596393 [TBL] [Abstract][Full Text] [Related]
2. Requirement for and sensitivity to lysozyme by Clostridium perfringens spores heated at ultrahigh temperatures. Adams DM Appl Microbiol; 1974 Apr; 27(4):797-801. PubMed ID: 4363559 [TBL] [Abstract][Full Text] [Related]
3. Inhibitory effect of combinations of heat treatment, pH, and sodium chloride on a growth from spores of nonproteolytic Clostridium botulinum at refrigeration temperature. Graham AF; Mason DR; Peck MW Appl Environ Microbiol; 1996 Jul; 62(7):2664-8. PubMed ID: 8779606 [TBL] [Abstract][Full Text] [Related]
4. Recovery of spores of Clostridium botulinum in yeast extract agar and pork infusion agar after heat treatment. Odlaug TE; Pflug IJ Appl Environ Microbiol; 1977 Oct; 34(4):377-81. PubMed ID: 335970 [TBL] [Abstract][Full Text] [Related]
5. Effect of plating medium on heat activation requirement of Clostridium botulinum spores. Montville TJ Appl Environ Microbiol; 1981 Oct; 42(4):734-6. PubMed ID: 7039510 [TBL] [Abstract][Full Text] [Related]
6. Interrelationship of heat and relative humidity in the destruction of Clostridium botulinum type E spores on whitefish chubs. Pace PJ; Krumbiegel ER; Wisniewski HJ Appl Microbiol; 1972 Apr; 23(4):750-7. PubMed ID: 4553143 [TBL] [Abstract][Full Text] [Related]
7. Inactivation of Clostridium perfringens type A spores at ultrahigh temperatures. Adams DM Appl Microbiol; 1973 Sep; 26(3):282-7. PubMed ID: 4356457 [TBL] [Abstract][Full Text] [Related]
8. Thermal inactivation of nonproteolytic Clostridium botulinum type E spores in model fish media and in vacuum-packaged hot-smoked fish products. Lindström M; Nevas M; Hielm S; Lähteenmäki L; Peck MW; Korkeala H Appl Environ Microbiol; 2003 Jul; 69(7):4029-36. PubMed ID: 12839778 [TBL] [Abstract][Full Text] [Related]
9. Recovery of heated Clostridium perfringens type A spores on selective media. Barach JT; Adams DM; Speck ML Appl Microbiol; 1974 Nov; 28(5):793-7. PubMed ID: 4374120 [TBL] [Abstract][Full Text] [Related]
10. Effect of media, additives, and incubation conditions on the recovery of high pressure and heat-injured Clostridium botulinum spores. Reddy NR; Tetzloff RC; Skinner GE Food Microbiol; 2010 Aug; 27(5):613-7. PubMed ID: 20510779 [TBL] [Abstract][Full Text] [Related]
11. Heat injury and recovery of vegetative cells of Clostridium botulinum type E. Pierson MD; Payne SL; Ades GL Appl Microbiol; 1974 Feb; 27(2):425-6. PubMed ID: 4595963 [TBL] [Abstract][Full Text] [Related]
12. Survival and dormancy of Clostridia spores. Hofer JW; Davis J Tex Med; 1972 Feb; 68(2):80-1. PubMed ID: 4552272 [No Abstract] [Full Text] [Related]
13. Effect of lysozyme concentration, heating at 90 degrees C, and then incubation at chilled temperatures on growth from spores of non-proteolytic Clostridium botulinum. Peck MW; Fernandez PS Lett Appl Microbiol; 1995 Jul; 21(1):50-4. PubMed ID: 7662337 [TBL] [Abstract][Full Text] [Related]
14. Growth from spores of nonproteolytic Clostridium botulinum in heat-treated vegetable juice. Stringer SC; Haque N; Peck MW Appl Environ Microbiol; 1999 May; 65(5):2136-42. PubMed ID: 10224012 [TBL] [Abstract][Full Text] [Related]
15. Effect of heat treatment on survival of, and growth from, spores of nonproteolytic Clostridium botulinum at refrigeration temperatures. Peck MW; Lund BM; Fairbairn DA; Kaspersson AS; Undeland PC Appl Environ Microbiol; 1995 May; 61(5):1780-5. PubMed ID: 7646016 [TBL] [Abstract][Full Text] [Related]
16. Survival studies with spores of Clostridium botulinum type E in pasteurized meat of the blue crab Callinectes sapidus. Cockey RR; Tatro MC Appl Microbiol; 1974 Apr; 27(4):629-33. PubMed ID: 4596746 [TBL] [Abstract][Full Text] [Related]
17. Combining heat treatment and subsequent incubation temperature to prevent growth from spores of non-proteolytic Clostridium botulinum. Stringer SC; Fairbairn DA; Peck MW J Appl Microbiol; 1997 Jan; 82(1):128-36. PubMed ID: 9113882 [TBL] [Abstract][Full Text] [Related]
18. C2 toxicity in extract of Clostridium botulinum type C spores. Yamakawa K; Nishida S; Nakamura S Infect Immun; 1983 Aug; 41(2):858-60. PubMed ID: 6347900 [TBL] [Abstract][Full Text] [Related]
19. Heat resistance and recovery of spores of non-proteolytic Clostridium botulinum in relation to refrigerated, processed foods with an extended shelf-life. Lund BM; Peck MW Soc Appl Bacteriol Symp Ser; 1994; 23():115S-128S. PubMed ID: 8047905 [No Abstract] [Full Text] [Related]
20. Recovery of spores of Clostridium difficile altered by heat or alkali. Kamiya S; Yamakawa K; Ogura H; Nakamura S J Med Microbiol; 1989 Mar; 28(3):217-21. PubMed ID: 2926793 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]