These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 4596393)

  • 21. Effect of sporulation medium and its divalent cation content on the heat and high pressure resistance of Clostridium botulinum type E spores.
    Lenz CA; Vogel RF
    Food Microbiol; 2014 Dec; 44():156-67. PubMed ID: 25084658
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Lysozyme-proteolytic enzyme dependent germination of type E Clostridium botulinum spores].
    Sebald M; Ionesco H
    C R Acad Hebd Seances Acad Sci D; 1972 Nov; 275(19):2175-7. PubMed ID: 4630684
    [No Abstract]   [Full Text] [Related]  

  • 23. Modeling the germination kinetics of clostridium botulinum 56A spores as affected by temperature, pH, and sodium chloride.
    Chea FP; Chen Y; Montville TJ; Schaffner DW
    J Food Prot; 2000 Aug; 63(8):1071-9. PubMed ID: 10945583
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contrasting effects of heat treatment and incubation temperature on germination and outgrowth of individual spores of nonproteolytic Clostridium botulinum bacteria.
    Stringer SC; Webb MD; Peck MW
    Appl Environ Microbiol; 2009 May; 75(9):2712-9. PubMed ID: 19270146
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The germination requirements of spores of Clostridium botulinum type E.
    Ando Y
    Jpn J Microbiol; 1971 Nov; 15(6):515-25. PubMed ID: 4946422
    [No Abstract]   [Full Text] [Related]  

  • 26. Heat resistance of spores of marine and terrestrial strains of Clostridium botulinum type C.
    Segner WP; Schmidt CF
    Appl Microbiol; 1971 Dec; 22(6):1030-3. PubMed ID: 4944802
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of transition metals added during sporulation on heat resistance of Clostridium botulinum 113B spores.
    Kihm DJ; Hutton MT; Hanlin JH; Johnson EA
    Appl Environ Microbiol; 1990 Mar; 56(3):681-5. PubMed ID: 2180370
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recovery of heat-injured spores of Clostridium perfringens types B, C and D by lysozyme and an initiation protein.
    Labbé RG; Chang CA
    Lett Appl Microbiol; 1995 Nov; 21(5):302-6. PubMed ID: 7576525
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemical manipulation of the heat resistance of Clostridium botulinum spores.
    Alderton G; Ito KA; Chen JK
    Appl Environ Microbiol; 1976 Apr; 31(4):492-8. PubMed ID: 5056
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Repair of heat-injured Clostridium perfringens spores during outgrowth.
    Barach JT; Flowers RS; Adams DM
    Appl Microbiol; 1975 Nov; 30(5):873-5. PubMed ID: 173240
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Germination of heat- and alkali-altered spores of Clostridium perfringens type A by lysozyme and an initiation protein.
    Duncan CL; Labbe RG; Reich RR
    J Bacteriol; 1972 Feb; 109(2):550-9. PubMed ID: 4333607
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of lysozyme on ionic forms of spores of Clostridium perfringens type A.
    Ando Y
    J Bacteriol; 1975 May; 122(2):794-5. PubMed ID: 236284
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Production of types A and B spores of Clostridium botulinum by the biphasic method: effect on spore population, radiation resistance, and toxigenicity.
    Anellis A; Berkowitz D; Kemper D; Rowley DB
    Appl Microbiol; 1972 Apr; 23(4):734-9. PubMed ID: 4111814
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proposed mechanism for sensitization by hypochlorite treatment of Clostridium botulinum spores.
    Foegeding PM; Busta FF
    Appl Environ Microbiol; 1983 Apr; 45(4):1374-9. PubMed ID: 6305269
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of irradiation temperature in the range--196 to 95C on the resistance of spores of Clostridium botulinum 33A in cooked beef.
    Grecz N; Walker AA; Anellis A; Berkowitz D
    Can J Microbiol; 1971 Feb; 17(2):135-42. PubMed ID: 4926793
    [No Abstract]   [Full Text] [Related]  

  • 36. The effects of gamma-radiation and heat on the germination of spores of Clostridium botulinum type E.
    Ando Y
    J Radiat Res; 1971 Mar; 12(1):29-36. PubMed ID: 4934429
    [No Abstract]   [Full Text] [Related]  

  • 37. Compound inhibitory to Clostridium botulinum type E produced by a Moraxella species.
    Kwan PL; Lee JS
    Appl Microbiol; 1974 Feb; 27(2):329-32. PubMed ID: 4595959
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SURVIVAL OF CLOSTRIDIUM BOTULINUM SPORES.
    ANELLIS A; GRECZ N; BERKOWITZ D
    Appl Microbiol; 1965 May; 13(3):397-401. PubMed ID: 14325280
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative studies of an asporogenic mutant and a wild type strain of Clostridium botulinum type E 1 .
    Emeruwa AC; Hawirko RZ
    Can J Microbiol; 1972 Jan; 18(1):29-34. PubMed ID: 4551615
    [No Abstract]   [Full Text] [Related]  

  • 40. [Clostridium botulinum type C: 1. Selection of a highly toxigenic bacterial population from a pure culture].
    Vinet G; Daigneault N
    Can J Microbiol; 1976 Sep; 22(9):1229-32. PubMed ID: 788871
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.