These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 4596667)

  • 1. Biochemical and genetic characteristics of the C4-dicarboxylic acids transport system of Salmonella typhimurium.
    Parada JL; Ortega MV; Carrillo-Castañeda G
    Arch Mikrobiol; 1973 Dec; 94(1):65-76. PubMed ID: 4596667
    [No Abstract]   [Full Text] [Related]  

  • 2. Dicarboxylic acid transport in membrane vesicles from Bacillus subtilis.
    Bisschop A; Doddema H; Konings WN
    J Bacteriol; 1975 Nov; 124(2):613-22. PubMed ID: 171251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of a dicarboxylic acid transport mutant phenotype in Escherichia coli K12.
    Kay WW
    Biochim Biophys Acta; 1972 May; 264(3):522-9. PubMed ID: 4554902
    [No Abstract]   [Full Text] [Related]  

  • 4. The transport of Krebs-cycle intermediates in Azotobacter vinelandii under various metabolic conditions.
    Postma PW; Cools A; van Dam K
    Biochim Biophys Acta; 1973 Aug; 318(1):91-104. PubMed ID: 4747078
    [No Abstract]   [Full Text] [Related]  

  • 5. Two routes for synthesis of phosphoenolpyruvate from C4-dicarboxylic acids in Escherichia coli.
    Hansen EJ; Juni E
    Biochem Biophys Res Commun; 1974 Aug; 59(4):1204-10. PubMed ID: 4370531
    [No Abstract]   [Full Text] [Related]  

  • 6. Utilization of dicarboxylic acids by Pseudomonas aeruginosa.
    Tiwari NP; Campbell JJ
    Can J Microbiol; 1969 Sep; 15(9):1095-100. PubMed ID: 4391940
    [No Abstract]   [Full Text] [Related]  

  • 7. Transport of dicarboxylic acids in Bacillus subtilis. Inducible uptake of L-malate.
    Fournier RE; McKillen MN; Pardee AB; Willecke K
    J Biol Chem; 1972 Sep; 247(17):5587-95. PubMed ID: 4626722
    [No Abstract]   [Full Text] [Related]  

  • 8. Transport of tricarboxylic acids in Salmonella typhimurium.
    Imai K; Iijima T; Hasegawa T
    J Bacteriol; 1973 Jun; 114(3):961-5. PubMed ID: 4576411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical and genetic characterization of a mutant of Salmonella typhimurium defective in a locus for glutamate dehydrogenase activity.
    Ortega MV; Aguilar C
    Mol Gen Genet; 1973 Sep; 125(4):351-8. PubMed ID: 4591364
    [No Abstract]   [Full Text] [Related]  

  • 10. The ms2io6A37 modification of tRNA in Salmonella typhimurium regulates growth on citric acid cycle intermediates.
    Persson BC; Olafsson O; Lundgren HK; Hederstedt L; Björk GR
    J Bacteriol; 1998 Jun; 180(12):3144-51. PubMed ID: 9620964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutants of Salmonella typhimurium lacking phosphoenolpyruvate carboxykinase and alpha-ketoglutarate dehydrogenase activities.
    Carrillo-Castañeda G; Ortega MV
    J Bacteriol; 1970 May; 102(2):524-30. PubMed ID: 4911543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two mutations affecting utilization of C4-dicarboxylic acids by Escherichia coli.
    Herbert AA; Guest JR
    J Gen Microbiol; 1970 Oct; 63(2):151-62. PubMed ID: 4929473
    [No Abstract]   [Full Text] [Related]  

  • 13. Transport of succinate in Escherichia coli. I. Biochemical and genetic studies of transport in whole cells.
    Lo TC; Rayman MK; Sanwal BD
    J Biol Chem; 1972 Oct; 247(19):6323-31. PubMed ID: 4346810
    [No Abstract]   [Full Text] [Related]  

  • 14. A transport system for phosphoenolpyruvate, 2-phosphoglycerate, and 3-phosphoglycerate in Salmonella typhimurium.
    Saier MH; Wentzel DL; Feucht BU; Judice JJ
    J Biol Chem; 1975 Jul; 250(13):5089-96. PubMed ID: 238977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on ribosomal mutants of Salmonella typhimurium LT-2.
    Tyler B; Ingraham JL
    Mol Gen Genet; 1973 May; 122(3):197-214. PubMed ID: 4268741
    [No Abstract]   [Full Text] [Related]  

  • 16. Mutants of Salmonella typhimurium deficient in DNA polymerase. I. Detection by their failure to produce colicin E1.
    MacPhee DG; Beazer MR
    Mol Gen Genet; 1973 Dec; 127(3):229-40. PubMed ID: 4361143
    [No Abstract]   [Full Text] [Related]  

  • 17. The pi-histidine factor of Salmonella typhimurium: a demonstration that pi-histidine factor integrates into the chromosome.
    Levinthal M; Yeh J
    J Bacteriol; 1972 Mar; 109(3):993-1000. PubMed ID: 4551760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of the soluble substrate recognition component of the dicarboxylate transport system of Escherichia coli.
    Lo TC; Sanwal BD
    J Biol Chem; 1975 Feb; 250(4):1600-2. PubMed ID: 803506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport of succinate in Escherichia coli. II. Characteristics of uptake and energy coupling with transport in membrane preparations.
    Rayman MK; Lo TC; Sanwal BD
    J Biol Chem; 1972 Oct; 247(19):6332-9. PubMed ID: 4568614
    [No Abstract]   [Full Text] [Related]  

  • 20. CO2 fixation and metabolic control in Pseudomonas saccharophila.
    Donawa AL; Ishaque M; Aleem MI
    Can J Microbiol; 1973 Oct; 19(10):1243-50. PubMed ID: 4762799
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.