These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 4596746)

  • 1. Survival studies with spores of Clostridium botulinum type E in pasteurized meat of the blue crab Callinectes sapidus.
    Cockey RR; Tatro MC
    Appl Microbiol; 1974 Apr; 27(4):629-33. PubMed ID: 4596746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incidence of Clostridium botulinum in crabmeat from the blue crab.
    Kautter DA; Leblanc AJ; LeBlanc AJ+LEBLANC AJ; Lynt RK
    Appl Microbiol; 1974 Oct; 28(4):722. PubMed ID: 4607823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of nonproteolytic Clostridium botulinum types B and E in crab analogs by combinations of heat pasteurization and water phase salt.
    Peterson ME; Paranjpye RN; Poysky FT; Pelroy GA; Eklund MW
    J Food Prot; 2002 Jan; 65(1):130-9. PubMed ID: 11808784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interrelationship of heat and relative humidity in the destruction of Clostridium botulinum type E spores on whitefish chubs.
    Pace PJ; Krumbiegel ER; Wisniewski HJ
    Appl Microbiol; 1972 Apr; 23(4):750-7. PubMed ID: 4553143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gamma-ray sterilization and residual toxicity studies of ground beef inoculated with spores of Clostridium botulinum.
    KEMPE LL; GRAIKOSKI JT
    Appl Microbiol; 1962 Jan; 10(1):31-6. PubMed ID: 14455088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of Clostridium botulinum type A spores by high-pressure processing at elevated temperatures.
    Reddy NR; Solomon HM; Tetzloff RC; Rhodehamel EJ
    J Food Prot; 2003 Aug; 66(8):1402-7. PubMed ID: 12929826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth and formation of toxin by Clostridium botulinum in peeled, inoculated, vacuum-packed potatoes after a double pasteurization and storage at 25 degrees C.
    Lund BM; Graham AF; George SM
    J Appl Bacteriol; 1988 Mar; 64(3):241-6. PubMed ID: 3290178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of nitrite and nitrate on toxin production by Clostridium botulinum and on nitrosamine formation in perishable canned comminuted cured meat.
    Christiansen LN; Johnston RW; Kautter DA; Howard JW; Aunan WJ
    Appl Microbiol; 1973 Mar; 25(3):357-62. PubMed ID: 4572891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Low Temperatures on Growth of Clostridium botulinum Spores in Meat of the Blue Crab.
    Solomon HM; Lynt RK; Lilly T; Kautter DA
    J Food Prot; 1977 Jan; 40(1):5-7. PubMed ID: 30731557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of heat treatment on survival of, and growth from, spores of nonproteolytic Clostridium botulinum at refrigeration temperatures.
    Peck MW; Lund BM; Fairbairn DA; Kaspersson AS; Undeland PC
    Appl Environ Microbiol; 1995 May; 61(5):1780-5. PubMed ID: 7646016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Risk of Clostridium botulinum type E toxin production in blue crab meat packaged in four commercial-type containers.
    Harrison MA; Garren DM; Huang YW; Gates KW
    J Food Prot; 1996 Mar; 59(3):257-60. PubMed ID: 10463443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of storage time and temperature on the survival of Clostridium botulinum spores in acid media.
    Odlaug TE; Pflug IJ
    Appl Environ Microbiol; 1977 Jul; 34(1):30-3. PubMed ID: 18990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Psychrotrophic clostridia mediated gas and botulinal toxin production in vacuum-packed chilled meat.
    Moorhead SM; Bell RG
    Lett Appl Microbiol; 1999 Feb; 28(2):108-12. PubMed ID: 10063639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of lysozyne on the recovery of heated Clostridium botulinum spores.
    Alderton G; Chen JK; Ito KA
    Appl Microbiol; 1974 Mar; 27(3):613-5. PubMed ID: 4596393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of sodium ascorbate and sodium nitrite on toxin formation of Clostridium botulinum in wieners.
    Bowen VG; Cerveny JG; Deibel RH
    Appl Microbiol; 1974 Mar; 27(3):605-6. PubMed ID: 4596392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymerase chain reaction for detection of Clostridium botulinum types A, B and E in food, soil and infant faeces.
    Szabo EA; Pemberton JM; Gibson AM; Eyles MJ; Desmarchelier PM
    J Appl Bacteriol; 1994 Jun; 76(6):539-45. PubMed ID: 8027003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of sodium nitrite on toxin production by Clostridium botulinum in bacon.
    Christiansen LN; Tompkin RB; Shaparis AB; Kueper TV; Johnston RW; Kautter DA; Kolari OJ
    Appl Microbiol; 1974 Apr; 27(4):733-7. PubMed ID: 4596753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitory effect of combinations of heat treatment, pH, and sodium chloride on a growth from spores of nonproteolytic Clostridium botulinum at refrigeration temperature.
    Graham AF; Mason DR; Peck MW
    Appl Environ Microbiol; 1996 Jul; 62(7):2664-8. PubMed ID: 8779606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Survival and outgrowth of Clostridium botulinum type E spores in smoked fish.
    Christiansen LN; Deffner J; Foster EM; Sugiyama H
    Appl Microbiol; 1968 Jan; 16(1):133-7. PubMed ID: 4865899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of lactic acid bacterium fermentation products and food-grade chemicals to control Listeria monocytogenes in blue crab (Callinectes sapidus) meat.
    Degnan AJ; Kaspar CW; Otwell WS; Tamplin ML; Luchansky JB
    Appl Environ Microbiol; 1994 Sep; 60(9):3198-203. PubMed ID: 7944362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.