These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 4597669)

  • 1. [Rapid determination on the biochemical activity of pathogenic intestinal bacteria].
    Presecki V
    Lijec Vjesn; 1974 Mar; 96(3):176-80. PubMed ID: 4597669
    [No Abstract]   [Full Text] [Related]  

  • 2. Microbial synthesis of 3-dehydroshikimic acid: a comparative analysis of D-xylose, L-arabinose, and D-glucose carbon sources.
    Li K; Frost JW
    Biotechnol Prog; 1999; 15(5):876-83. PubMed ID: 10514257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Biochemical characterization of lysotypes of S. typhi isolated in Southern Italy and in Sicily].
    Giammanco G; Carmeni A
    Nuovi Ann Ig Microbiol; 1967; 18(1):55-64. PubMed ID: 4882807
    [No Abstract]   [Full Text] [Related]  

  • 4. [GENETIC RECOMBINATIONS IN INTESTINAL BACTERIA. II. STUDY OF THE GENETIC STRUCTURE OF HYBRIDS OF DYSENTERY BACTERIA (BIOCHEMICAL PROPERTIES AND MOTILITY)].
    ABIDOV AA
    Biull Eksp Biol Med; 1963 Jul; 56():72-4. PubMed ID: 14068611
    [No Abstract]   [Full Text] [Related]  

  • 5. The anaerobic dissimilation of D-xylose-1-C-14, D-arabinose-1-C-14, and L-arabinose-1-C-14 by Escherichia coli.
    GIBBS M; PAEGE LM
    J Biol Chem; 1961 Jan; 236():6-9. PubMed ID: 13705079
    [No Abstract]   [Full Text] [Related]  

  • 6. Fermentation of various soluble carbohydrates in rumen micro-organisms.
    Czerkawaki JW; Breckenridge G
    Proc Nutr Soc; 1969 Sep; 28(2):52A-53A. PubMed ID: 5389489
    [No Abstract]   [Full Text] [Related]  

  • 7. L-asparaginase production by various species of Salmonella.
    Kaczurba E
    Acta Microbiol Pol B; 1971; 3(3):135-42. PubMed ID: 5115806
    [No Abstract]   [Full Text] [Related]  

  • 8. Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass.
    Dien BS; Nichols NN; O'Bryan PJ; Bothast RJ
    Appl Biochem Biotechnol; 2000; 84-86():181-96. PubMed ID: 10849788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific ethanol production rate in ethanologenic Escherichia coli strain KO11 Is limited by pyruvate decarboxylase.
    Huerta-Beristain G; Utrilla J; Hernández-Chávez G; Bolívar F; Gosset G; Martinez A
    J Mol Microbiol Biotechnol; 2008; 15(1):55-64. PubMed ID: 18349551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polifungin, a new antifungal antibiotic. I. Morphological, cultural, and physiological properties of Streptomyces sp. strain producing a new complex of tetraene antibiotics.
    Kotiuszko D; Wituch K; Morawska H; Siejko D
    Acta Microbiol Pol A; 1971; 4(1):135-43. PubMed ID: 4947547
    [No Abstract]   [Full Text] [Related]  

  • 11. [Detection of colicinogenia in the co-members of natural intestinal biocenoses].
    Kokhanovskaia TM
    Antibiotiki; 1971 Feb; 16(2):130-3. PubMed ID: 4934034
    [No Abstract]   [Full Text] [Related]  

  • 12. Comparison between Escherichia coli K-12 strains W3110 and MG1655 and wild-type E. coli B as platforms for xylitol production.
    Khankal R; Luziatelli F; Chin JW; Frei CS; Cirino PC
    Biotechnol Lett; 2008 Sep; 30(9):1645-53. PubMed ID: 18414795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. L-Arabinose metabolism in Candida arabinofermentans PYCC 5603T and Pichia guilliermondii PYCC 3012: influence of sugar and oxygen on product formation.
    Fonseca C; Spencer-Martins I; Hahn-Hägerdal B
    Appl Microbiol Biotechnol; 2007 May; 75(2):303-10. PubMed ID: 17262211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101.
    Mohagheghi A; Evans K; Chou YC; Zhang M
    Appl Biochem Biotechnol; 2002; 98-100():885-98. PubMed ID: 12018310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mycobacterium parafortuitum: a new species.
    Tsukamura M
    J Gen Microbiol; 1966 Jan; 42(1):7-12. PubMed ID: 5922300
    [No Abstract]   [Full Text] [Related]  

  • 16. A substrate-selective co-fermentation strategy with Escherichia coli produces lactate by simultaneously consuming xylose and glucose.
    Eiteman MA; Lee SA; Altman R; Altman E
    Biotechnol Bioeng; 2009 Feb; 102(3):822-7. PubMed ID: 18828178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antibacterial effects of the Cu(II)-exchanged montmorillonite on Escherichia coli K88 and Salmonella choleraesuis.
    Tong G; Yulong M; Peng G; Zirong X
    Vet Microbiol; 2005 Jan; 105(2):113-22. PubMed ID: 15627522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced enzyme activities of inclusion bodies of recombinant beta-galactosidase via the addition of inducer analog after L-arabinose induction in the araBAD promoter system of Escherichia coli.
    Jung KH
    J Microbiol Biotechnol; 2008 Mar; 18(3):434-42. PubMed ID: 18388459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fermentation of sugar mixtures using Escherichia coli catabolite repression mutants engineered for production of L-lactic acid.
    Dien BS; Nichols NN; Bothast RJ
    J Ind Microbiol Biotechnol; 2002 Nov; 29(5):221-7. PubMed ID: 12407454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intraluminal small-intestinal utilization of d-xylose by bacteria. A limitation of the d-xylose absorption test.
    Goldstein F; Karacadag S; Wirts CW; Kowlessar OD
    Gastroenterology; 1970 Sep; 59(3):380-6. PubMed ID: 4917787
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.