These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 4597731)

  • 41. Rifampin: inhibition of ribonucleic acid synthesis after potentiation by amphotericin B in Saccharomyces cerevisiae.
    Battaner E; Kumar BV
    Antimicrob Agents Chemother; 1974 Apr; 5(4):371-6. PubMed ID: 15825390
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The role of macromolecular syntheses in the origin of ultraviolet-induced mutations in the yeast Saccharomyces cerevisiae.
    Kuznetsova OB
    Sov Genet; 1971 May; 7(5):627-36. PubMed ID: 4950355
    [No Abstract]   [Full Text] [Related]  

  • 43. Polyamines, macromolecular synthesis and ribosomes in Saccharomyces cerevisiae.
    Miret JJ; Goldemberg SH
    Yeast; 1989 Apr; 5 Spec No():S333-7. PubMed ID: 2665365
    [No Abstract]   [Full Text] [Related]  

  • 44. [Inhibiting effect of concanavalin A on certain biosynthetic processes in spheroplasts of the yeast Saccharomyces cerevisiae].
    Riazanova LP; Tsiomenko AB; Bieli P; Vagabov VM; Kulaev IS
    Biokhimiia; 1982 Jun; 47(6):962-70. PubMed ID: 7052145
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of ammonia and glutamine on macromolecule synthesis and breakdown during sporulation of Saccharomyces cerevisiae.
    Durieu-Trautmann O; Delavier-Klutchko C
    Biochem Biophys Res Commun; 1977 Nov; 79(2):438-42. PubMed ID: 337971
    [No Abstract]   [Full Text] [Related]  

  • 46. Nalidixic acid, oxolinic acid, and novobiocin inhibit yeast glycyl- and leucyl-transfer RNA synthetases.
    Wright HT; Nurse KC; Goldstein DJ
    Science; 1981 Jul; 213(4506):455-6. PubMed ID: 7017932
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis of mitochondrial function and assembly.
    Yaffe MP
    Methods Enzymol; 1991; 194():627-43. PubMed ID: 2005813
    [No Abstract]   [Full Text] [Related]  

  • 48. Isolation and fractionation of yeast nucleic acids. II. Rapid isolation of mitochondrial deoxyribonucleic acid by poly(L-lysine) kieselguhr chromatography.
    Finkelstein DB; Blamire J; Marmur J
    Biochemistry; 1972 Dec; 11(25):4853-8. PubMed ID: 4347706
    [No Abstract]   [Full Text] [Related]  

  • 49. Mechanism of action of nalidixic acid on Escherichia coli. Vi. Cell-free studies.
    Boyle JV; Cook TM; Goss WA
    J Bacteriol; 1969 Jan; 97(1):230-6. PubMed ID: 4884814
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Promotion of sporulation by caffeine pretreatment in Saccharomyces cerevisiae. I. Metabolism of nucleic acids and protein during sporulation.
    Tsuboi M; Yanagishima N
    Arch Microbiol; 1975 Dec; 106(3):159-64. PubMed ID: 766716
    [TBL] [Abstract][Full Text] [Related]  

  • 51. RNA and protein elongation rates in Saccharomyces cerevisiae.
    Lacroute F
    Mol Gen Genet; 1973 Sep; 125(4):319-27. PubMed ID: 4591362
    [No Abstract]   [Full Text] [Related]  

  • 52. Thermosensitive mutations affecting ribonucleic acid polymerases in Saccharomyces cerevisiae.
    Thonart P; Bechet J; Hilger F; Burny A
    J Bacteriol; 1976 Jan; 125(1):25-32. PubMed ID: 1107309
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biogenesis of mitochondria. The effects of membrane unsaturated fatty acid content on the activity and assembly of the yeast mitochondrial protein-synthesizing system.
    Marzuki S; Cobon GS; Crowfoot PD; Linnane AW
    Arch Biochem Biophys; 1975 Aug; 169(2):591-600. PubMed ID: 126665
    [No Abstract]   [Full Text] [Related]  

  • 54. Mutations sensitizing yeast cells to the start inhibitor nalidixic acid.
    Prendergast JA; Singer RA; Rowley N; Rowley A; Johnston GC; Danos M; Kennedy B; Gaber RF
    Yeast; 1995 May; 11(6):537-47. PubMed ID: 7645344
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Macromolecule synthesis and breakdown in relation to sporulation and meiosis in yeast.
    Hopper AK; Magee PT; Welch SK; Friedman M; Hall BD
    J Bacteriol; 1974 Aug; 119(2):619-28. PubMed ID: 4604714
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cytoplasmic-type 80 S ribosomes associated with yeast mitochondria. I. Evidence for ribosome binding sites on yeast mitochondria.
    Kellems RE; Butow RA
    J Biol Chem; 1972 Dec; 247(24):8043-50. PubMed ID: 4629740
    [No Abstract]   [Full Text] [Related]  

  • 57. Preferential synthesis of yeast mitochondrial DNA in alpha factor-arrested cells.
    Petes TD; Fangman WL
    Biochem Biophys Res Commun; 1973 Dec; 55(3):603-9. PubMed ID: 4586613
    [No Abstract]   [Full Text] [Related]  

  • 58. Effect of lipid status on cytoplasmic and mitochondrial protein synthesis in anaerobic cultures of Saccharomyces cerevisiae.
    Gordon PA; Stewart PR
    J Gen Microbiol; 1972 Sep; 72(2):231-42. PubMed ID: 4562305
    [No Abstract]   [Full Text] [Related]  

  • 59. Conjugal deoxyribonucleic acid replication by Escherichia coli K-12: effect of nalidixic acid.
    Fenwick RG; Curtiss R
    J Bacteriol; 1973 Dec; 116(3):1236-46. PubMed ID: 4584806
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Recessive suppression and protein synthesis in yeast.
    Smirnov VN; Kreier VG; Lizlova LV; Inge-Vechtomov SG
    FEBS Lett; 1973 Dec; 38(1):96-100. PubMed ID: 4589559
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.