These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 4598006)

  • 1. Nitrogen repression of the allantoin degradative enzymes in Saccharomyces cerevisiae.
    Bossinger J; Lawther RP; Cooper TG
    J Bacteriol; 1974 Jun; 118(3):821-9. PubMed ID: 4598006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of the allantoin degradative enzymes in Saccharomyces cerevisiae by the last intermediate of the pathway.
    Cooper TG; Lawther RP
    Proc Natl Acad Sci U S A; 1973 Aug; 70(8):2340-4. PubMed ID: 4599622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolite compartmentation in Saccharomyces cerevisiae.
    Zacharski CA; Cooper TG
    J Bacteriol; 1978 Aug; 135(2):490-7. PubMed ID: 355230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxaluric acid: a non-metabolizable inducer of the allantoin degradative enzymes in Saccharomyces cerevisiae.
    Sumrada R; Cooper TG
    J Bacteriol; 1974 Mar; 117(3):1240-7. PubMed ID: 4591950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. What is the function of nitrogen catabolite repression in Saccharomyces cerevisiae?
    Cooper TG; Sumrada RA
    J Bacteriol; 1983 Aug; 155(2):623-7. PubMed ID: 6135687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxalurate transport in Saccharomyces cerevisiae.
    Cooper TG; McKelvey J; Sumrada R
    J Bacteriol; 1979 Sep; 139(3):917-23. PubMed ID: 383700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutamine and ammonia in nitrogen catabolite repression of Saccharomyces cerevisiae.
    Dubois E; Vissers S; Grenson M; Wiame JM
    Biochem Biophys Res Commun; 1977 Mar; 75(2):233-9. PubMed ID: 322661
    [No Abstract]   [Full Text] [Related]  

  • 8. Induction of the allantoin degradative enzymes by allophanic acid, the last intermediate of the pathway.
    Cooper TG; Lawther R
    Biochem Biophys Res Commun; 1973 May; 52(1):137-42. PubMed ID: 4576267
    [No Abstract]   [Full Text] [Related]  

  • 9. Isolation and characterization of mutants that produce the allantoin-degrading enzymes constitutively in Saccharomyces cerevisiae.
    Chisholm G; Cooper TG
    Mol Cell Biol; 1982 Sep; 2(9):1088-95. PubMed ID: 6757722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absence of involvement of glutamine synthetase and of NAD-linked glutamate dehydrogenase in the nitrogen catabolite repression of arginase and other enzymes in Saccharomyces cerevisiae.
    Dubois EL; Grenson M
    Biochem Biophys Res Commun; 1974 Sep; 60(1):150-7. PubMed ID: 4153896
    [No Abstract]   [Full Text] [Related]  

  • 11. Nitrogen metabolite repression of arginase, ornithine transaminase and allantoinase in a conditional ethionine-resistant mutant of Saccharomyces cerevisiae with low activity of catabolic NAD-specific glutamate dehydrogenase.
    Middelhoven WJ; Hoogkamer-te Niet MC
    Antonie Van Leeuwenhoek; 1982 Dec; 48(5):417-32. PubMed ID: 6762146
    [No Abstract]   [Full Text] [Related]  

  • 12. Catabolite repression and nitrogen control of allantoin-degrading enzymes in Pseudomonas aeruginosa.
    Janssen DB; van der Drift C
    Antonie Van Leeuwenhoek; 1983 Nov; 49(4-5):501-8. PubMed ID: 6418068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Proceedings: Catabolic repression by nitrogen of arginase synthesis in Saccharomyces cerevisiae].
    Dubois E; Grenson M; Wiame JM
    Arch Int Physiol Biochim; 1974 Oct; 82(4):798. PubMed ID: 4141468
    [No Abstract]   [Full Text] [Related]  

  • 14. Possible failure of NADP-glutamate dehydrogenase to participate directly in nitrogen repression of the allantoin degradative enzymes in Saccharomyces cerevisiae.
    Bossinger J; Cooper T
    Biochem Biophys Res Commun; 1975 Oct; 66(3):889-92. PubMed ID: 241348
    [No Abstract]   [Full Text] [Related]  

  • 15. The effect of thiourea on ureide metabolism in Neurospora crassa.
    Nirmala J; Sivarama Sastry K
    Biochem J; 1973 Nov; 136(3):749-55. PubMed ID: 4273557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pleiotropic control of five eucaryotic genes by multiple regulatory elements.
    Turoscy V; Cooper TG
    J Bacteriol; 1982 Sep; 151(3):1237-46. PubMed ID: 7050082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Urea transport in Saccharomyces cerevisiae.
    Cooper TG; Sumrada R
    J Bacteriol; 1975 Feb; 121(2):571-6. PubMed ID: 1089637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non specific induction of arginase in Saccharomyces cerevisiae.
    Dubois EL; Wiame JM
    Biochimie; 1976; 58(1-2):207-11. PubMed ID: 782556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clustering of the genes for allantoin degradation in Saccharomyces cerevisiae.
    Lawther RP; Riemer E; Chojnacki B; Cooper TG
    J Bacteriol; 1974 Aug; 119(2):461-8. PubMed ID: 4604238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of induced and repressed enzyme synthesis in Saccharomyces cerevisiae.
    Lawther RP; Cooper TG
    J Bacteriol; 1975 Mar; 121(3):1064-73. PubMed ID: 1090586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.