These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 4599312)
21. Intracellular production of superoxide radical and of hydrogen peroxide by redox active compounds. Hassan HM; Fridovich I Arch Biochem Biophys; 1979 Sep; 196(2):385-95. PubMed ID: 225995 [No Abstract] [Full Text] [Related]
22. Inactivation of Escherichia coli by superoxide radicals and their dismutation products. van Hemmen JJ; Meuling WJ Arch Biochem Biophys; 1977 Aug; 182(2):743-8. PubMed ID: 197892 [No Abstract] [Full Text] [Related]
23. Comparative study of superoxide dismutase, catalase and glutathione peroxidase levels in erythrocytes of different animals. Maral J; Puget K; Michelson AM Biochem Biophys Res Commun; 1977 Aug; 77(4):1525-35. PubMed ID: 901548 [No Abstract] [Full Text] [Related]
24. Erythrocyte superoxide dismutase, catalase and glutathione peroxidase in conditions of augmented oxidant stress. Gerli GC; Beretta L; Bianchi M; Agostoni A Bull Eur Physiopathol Respir; 1981; 17 Suppl():201-5. PubMed ID: 7248570 [No Abstract] [Full Text] [Related]
25. The role of superoxide anion generation in phagocytic bactericidal activity. Studies with normal and chronic granulomatous disease leukocytes. Johnston RB; Keele BB; Misra HP; Lehmeyer JE; Webb LS; Baehner RL; RaJagopalan KV J Clin Invest; 1975 Jun; 55(6):1357-72. PubMed ID: 166094 [TBL] [Abstract][Full Text] [Related]
26. The recA+ gene product is more important than catalase and superoxide dismutase in protecting Escherichia coli against hydrogen peroxide toxicity. Carlsson J; Carpenter VS J Bacteriol; 1980 Apr; 142(1):319-21. PubMed ID: 6989807 [TBL] [Abstract][Full Text] [Related]
27. Bactericidal function of human polymorphonuclear leukocytes. E. Mead Johnson Award Address. Quie PG Pediatrics; 1972 Aug; 50(2):264-70. PubMed ID: 5045354 [No Abstract] [Full Text] [Related]
28. Superoxide dismutases and the oxidative burst in human blood polymorphonuclear leukocytes. Torres M; Hakim J Adv Exp Med Biol; 1982; 141():429-40. PubMed ID: 7090922 [No Abstract] [Full Text] [Related]
29. Histochemical disclosure of endogenous and H2O2-dependent reducing enzyme activities in leukocytes and other cytological entities from the human oral cavity. Niukian K; Eichel B; Shahrik HA Arch Oral Biol; 1973 Apr; 18(4):505-16. PubMed ID: 4516063 [No Abstract] [Full Text] [Related]
30. Amelioration of hydroxyurea-induced suppression of phagocytosis in human granulocytes by free radical scavengers. SzczepaĆnska I; Kwiatkowska J; Przybyszewski WM; Sitarska E; Malec J Scand J Haematol; 1985 Jan; 34(1):35-8. PubMed ID: 2982209 [TBL] [Abstract][Full Text] [Related]
31. Comparative study of the metabolic and bactericidal characteristics of severely glucose-6-phosphate dehydrogenase-deficient polymorphonuclear leukocytes and leukocytes from children with chronic granulomatous disease. Baehner RL; Johnston RB; Nathan DG J Reticuloendothel Soc; 1972 Aug; 12(2):150-69. PubMed ID: 4403896 [No Abstract] [Full Text] [Related]
32. Superoxide dismutase, glutathione peroxidase and catalase in oxidative hemolysis. A study of Fanconi's anemia erythrocytes. Mavelli I; Ciriolo MR; Rotilio G; De Sole P; Castorino M; Stabile A Biochem Biophys Res Commun; 1982 May; 106(2):286-90. PubMed ID: 7103992 [No Abstract] [Full Text] [Related]
33. Glutathione peroxidase, superoxide dismutase and catalase in the red blood cells of GSH-normal and GSH-deficient sheep. Suzuki T; Agar NS Experientia; 1983 Jan; 39(1):103-4. PubMed ID: 6825769 [TBL] [Abstract][Full Text] [Related]
34. Inhibition of phagocytosis-associated chemiluminescence by superoxide dismutase. Webb LS; Keele BB; Johnston RB Infect Immun; 1974 Jun; 9(6):1051-6. PubMed ID: 4857420 [TBL] [Abstract][Full Text] [Related]
35. Effect of iron (III) in the presence of various ligands on the phagocytic and metabolic activity of human polymorphonuclear leukocytes. van Asbeck BS; Marx JJ; Struyvenberg A; van Kats JH; Verhoef J J Immunol; 1984 Feb; 132(2):851-6. PubMed ID: 6690620 [TBL] [Abstract][Full Text] [Related]
36. Effects of superoxide dismutase and catalase on catalysis of 6-hydroxydopamine and 6-aminodopamine autoxidation by iron and ascorbate. Sullivan SG; Stern A Biochem Pharmacol; 1981 Aug; 30(16):2279-85. PubMed ID: 6794574 [No Abstract] [Full Text] [Related]
37. [Lipid peroxidation and the blood antioxidant activity in psoriasis]. Polkanov VS; Bochkarev IuM; Shmeleva LT; Kipper SN Vestn Dermatol Venerol; 1987; (7):42-6. PubMed ID: 3673243 [No Abstract] [Full Text] [Related]
38. [Granulocyte functions in infection in the neonatal period]. Eschenbach C Beitr Infusionther Klin Ernahr; 1986; 15():285-93. PubMed ID: 3753413 [No Abstract] [Full Text] [Related]
39. Mode of activation of granule-bound NADPH oxidase in leucocytes during phagocytosis. Patriarca P; Cramer R; Marussi M; Rossi F; Romeo D Biochim Biophys Acta; 1971 May; 237(2):335-8. PubMed ID: 4398347 [No Abstract] [Full Text] [Related]
40. Bactericidal properties of hydrogen peroxide and copper or iron-containing complex ions in relation to leukocyte function. Elzanowska H; Wolcott RG; Hannum DM; Hurst JK Free Radic Biol Med; 1995 Mar; 18(3):437-49. PubMed ID: 9101234 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]