These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 4600488)

  • 1. Effect of some physical and chemical factors on the biomass and sterols of Candida vishwanathii, C. pseudotropicalis and Saccharomyces cerevisiae.
    Gutpa KG; Kushu K; Bhatnagar L
    Indian J Exp Biol; 1973 Nov; 11(6):584-6. PubMed ID: 4600488
    [No Abstract]   [Full Text] [Related]  

  • 2. [Biosynthesis of sterols by various yeasts].
    Eliazian AA; Maroian EA; Arutiunian TG
    Mikrobiologiia; 1975; 44(4):632-6. PubMed ID: 1100997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study of cells and mitochondria of Saccharomyces cerevisiae and of a hydrocarbon-utilizing yeast, Candida lipolytica.
    Skipton MD; Watson K; Houghton RL; Griffiths DE
    J Gen Microbiol; 1974 Sep; 84(1):94-110. PubMed ID: 4154966
    [No Abstract]   [Full Text] [Related]  

  • 4. Long-term incomplete xylose fermentation, after glucose exhaustion, with Candida shehatae co-immobilized with Saccharomyces cerevisiae.
    Lebeau T; Jouenne T; Junter GA
    Microbiol Res; 2007; 162(3):211-8. PubMed ID: 16959480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The cloning and expression of the gene for beta-galactosidase from Candida pseudotropicalis yeasts in Saccharomyces cerevisiae cells].
    Tretiak KA; Zakal'skiĭ AE; Gudz' SP
    Mikrobiol Z; 1998; 60(4):57-66. PubMed ID: 9859642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lactic acid tolerance determined by measurement of intracellular pH of single cells of Candida krusei and Saccharomyces cerevisiae isolated from fermented maize dough.
    Halm M; Hornbaek T; Arneborg N; Sefa-Dedeh S; Jespersen L
    Int J Food Microbiol; 2004 Jul; 94(1):97-103. PubMed ID: 15172490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Cytomorphologic characteristics of Saccharomyces cerevisiae and Candida utilis as an index of the physiologic state of the culture].
    Vrana D; Beran K
    Mikrobiologiia; 1977; 46(1):161-4. PubMed ID: 323650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effects of cadmium, zinc, lead and mercury on the growth and accumulating ability of Saccharomyces cerevisiae, Saccharomycopsis lipolytica, Candida tropicalis, and Candida utilis].
    Grafl HJ; Schwantes HO
    Zentralbl Bakteriol Mikrobiol Hyg B; 1983 Jan; 177(1-2):57-74. PubMed ID: 6367300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Sterol formation by Canida boidinii].
    Gal'tsova RD; Vakina IP
    Mikrobiologiia; 1979; 48(6):985-8. PubMed ID: 575192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Several patterns in lipid biosynthesis by thermo-tolerant Candida tropicalis yeasts during carbohydrate and hydrocarbon nutrition].
    Loĭko ZI; Isakova DM; Kvasnikov EI
    Mikrobiologiia; 1974; 43(6):1005-9. PubMed ID: 4449487
    [No Abstract]   [Full Text] [Related]  

  • 11. Influence of culture conditions on glutathione production by Saccharomyces cerevisiae.
    Santos LO; Gonzales TA; Ubeda BT; Monte Alegre R
    Appl Microbiol Biotechnol; 2007 Dec; 77(4):763-9. PubMed ID: 17926030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The metabolism of long-chain fatty acids and alcohols by Candida tropicalis and Saccharomyces cerevisiae.
    Bell GH
    Antonie Van Leeuwenhoek; 1973; 39(1):137-49. PubMed ID: 4570838
    [No Abstract]   [Full Text] [Related]  

  • 13. Highly efficient assimilation of lactose by a metabolically engineered strain of Saccharomyces cerevisiae.
    Rubio-Texeira M; Castrillo JI; Adam AC; Ugalde UO; Polaina J
    Yeast; 1998 Jun; 14(9):827-37. PubMed ID: 9818720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competition for glucose between the yeasts Saccharomyces cerevisiae and Candida utilis.
    Postma E; Kuiper A; Tomasouw WF; Scheffers WA; van Dijken JP
    Appl Environ Microbiol; 1989 Dec; 55(12):3214-20. PubMed ID: 2694963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sterol biosynthesis in antibiotic sensitive and resistant Candida.
    Fryberg M; Oehlschlager AC; Unrau AM
    Arch Biochem Biophys; 1976 Mar; 173(1):171-7. PubMed ID: 769695
    [No Abstract]   [Full Text] [Related]  

  • 16. Mediated electrochemical measurement of the inhibitory effects of furfural and acetic acid on Saccharomyces cerevisiae and Candida shehatae.
    Zhao J; Wang M; Yang Z; Gong Q; Lu Y; Yang Z
    Biotechnol Lett; 2005 Feb; 27(3):207-11. PubMed ID: 15717131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of delta 5,7-sterol accumulation during growth of Saccharomyces cerevisiae.
    Novotný C; Bĕhalová B; Dolezalová L; Zajícek J
    Folia Microbiol (Praha); 1987; 32(1):13-23. PubMed ID: 3546026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ability to assimilate nitrogenous oxides is limited to a few species of yeasts.
    Choudary PV
    Microbios; 1993; 74(301):241-8. PubMed ID: 8366830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of growth rate on the glucose metabolism of yeast grown in continuous culture. Radiorespirometric studies.
    Mian FA; Fencl Z; Prokop A; Mohagheghi A; Fazeli A
    Folia Microbiol (Praha); 1974; 19(3):191-8. PubMed ID: 4603157
    [No Abstract]   [Full Text] [Related]  

  • 20. [Leakage products of yeasts. I. Discontinuities in the surface tension of the medium and in growth of cells].
    Heinzelmann H; Kraepelin G; Bogen HJ
    Arch Mikrobiol; 1972; 82(4):300-10. PubMed ID: 4554561
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.