These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Functional arginyl residues as NADH binding sites of alcohol dehydrogenases. Lange LG; Riordan JF; Vallee BL Biochemistry; 1974 Oct; 13(21):4361-70. PubMed ID: 4370030 [No Abstract] [Full Text] [Related]
5. The kinetics of reactions catalyzed by alkaline phosphatase: the effects of added nucleophiles. Hinberg I; Laidler KJ Can J Biochem; 1972 Dec; 50(12):1360-8. PubMed ID: 4567111 [No Abstract] [Full Text] [Related]
6. Negative cooperativity and half of the sites reactivity. Alkaline phosphatases of Escherichia coli with Zn2+, Co2+, Cd2+, Mn2+, and Cu2+ in the active sites. Chappelet-Tordo D; Iwatsubo M; Lazdunski M Biochemistry; 1974 Aug; 13(18):3754-62. PubMed ID: 4604809 [No Abstract] [Full Text] [Related]
12. L-serine binds to arginine-148 of the beta 2 subunit of Escherichia coli tryptophan synthase. Tanizawa K; Miles EW Biochemistry; 1983 Jul; 22(15):3594-603. PubMed ID: 6412746 [TBL] [Abstract][Full Text] [Related]
13. Modification of an essential arginine in Escherichia coli DNA-dependent RNA polymerase. Armstrong VW; Sternbach H; Eckstein F FEBS Lett; 1976 Nov; 70(1):48-50. PubMed ID: 791678 [No Abstract] [Full Text] [Related]
14. Succinyl coenzyme A synthetase of Escherichia coli. Effects of phosphoenzyme formation and of substrate binding on the reactivity and stability of the enzyme. Moffet FJ; Wang T; Bridger WA J Biol Chem; 1972 Dec; 247(24):8139-44. PubMed ID: 4565676 [No Abstract] [Full Text] [Related]
15. Mechanisms of hydrolysis of O-phosphorothioates and inorganic thiophosphate by Escherichia coli alkaline phosphatase. Chlebowski JF; Coleman JE J Biol Chem; 1974 Nov; 249(22):7192-202. PubMed ID: 4612034 [No Abstract] [Full Text] [Related]
16. Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase. O'Brien PJ; Herschlag D Biochemistry; 2001 May; 40(19):5691-9. PubMed ID: 11341834 [TBL] [Abstract][Full Text] [Related]
17. Elucidation of the quaternary structure of reversibly immobilized alkaline phosphatase derivatives. McCracken S; Meighen E Can J Biochem; 1979 Jun; 57(6):834-42. PubMed ID: 383239 [TBL] [Abstract][Full Text] [Related]
18. A mutationally altered alkaline phosphatase from Escherichia coli. I. Formation of an active enzyme in vitro and phenotypic suppression in vivo. Halford SE; Lennette DA; Kelley PM; Schlesinger MJ J Biol Chem; 1972 Apr; 247(7):2087-94. PubMed ID: 4552687 [No Abstract] [Full Text] [Related]
19. Seryl transfer ribonucleic acid synthetase of Escherichia coli B. Purification, subunit structure, and behavior in the acylation reaction. Boeker EA; Hays AP; Cantoni GL Biochemistry; 1973 Jun; 12(13):2379-83. PubMed ID: 4350948 [No Abstract] [Full Text] [Related]
20. Phosphoramidic acids. A new class of nonspecific substrates for alkaline phosphatase from Escherichia coli. Snyder SL; Wilson IB Biochemistry; 1972 Apr; 11(9):1616-23. PubMed ID: 4554950 [No Abstract] [Full Text] [Related] [Next] [New Search]