These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 4602914)

  • 1. Phenotypic properties of a mutation in the regulator gene which controls the functioning of genes of deoxynucleoside catabolism in Escherichia coli.
    Sukhodolets VV; Flyakh YaV
    Sov Genet; 1974 Apr; 8(2):233-8. PubMed ID: 4602914
    [No Abstract]   [Full Text] [Related]  

  • 2. Study of mutations of genes regulating nucleoside catabolism in Escherichia coli.
    Flyakh YaV ; Sukhodolets VV; Chukanova TI
    Sov Genet; 1974 Dec; 9(2):201-8. PubMed ID: 4617317
    [No Abstract]   [Full Text] [Related]  

  • 3. The nature of phenotypic reversions of deletion mutants with respect to thymidine-phosphorylase in Escherichia coli.
    Sukhodolets VV; Galeis VP; Smirnov YuV
    Sov Genet; 1974 Dec; 9(2):262-4. PubMed ID: 4617321
    [No Abstract]   [Full Text] [Related]  

  • 4. Genetic study of mutants of Escherichia coli K-12 with a thymidine phosphorylase deficiency.
    Sukhodolets VV; Flyakh YV; Pukhova ES; Chukanova TI
    Sov Genet; 1973 Sep; 7(3):343-51. PubMed ID: 4612732
    [No Abstract]   [Full Text] [Related]  

  • 5. [A further study of the nature of phenotypical reversions in thymidine phosphorylase deletion mutants of Escherichia coli K-12].
    Mironov AS; Smirnov IuV; Sukhodolets VV
    Genetika; 1975 Apr; 11(4):97-105. PubMed ID: 776741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Chromosomal inversion accompanied by an enhancement of uridine phosphorylase gene expression in Escherichia coli K-12].
    Kulakauskas ST; Sukhodolets VV; Mironov AS
    Genetika; 1985 Mar; 21(3):375-83. PubMed ID: 2985468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of the regulation of nucleoside metabolism in Escherichia coli.
    Chukanova TI; Sukhodolets VV; Flyakh YV
    Mol Biol; 1973; 7(3):257-63. PubMed ID: 4589446
    [No Abstract]   [Full Text] [Related]  

  • 8. Characteristics of the deo operon: role in thymine utilization and sensitivity to deoxyribonucleosides.
    Lomax MS; Greenberg GR
    J Bacteriol; 1968 Aug; 96(2):501-14. PubMed ID: 4877128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thymine utilization in Escherichia coli K12 on the role of deoxyribose 1-phosphate and thymidine phosphorylase.
    Jensen KF; Leer JC; Nygaard P
    Eur J Biochem; 1973 Dec; 40(2):345-54. PubMed ID: 4592648
    [No Abstract]   [Full Text] [Related]  

  • 10. [Escherichia coli K-12 mutants for the thymidine phosphorylase structural gene that retain the anabolic function of the enzyme].
    Moskaleva ND; Sukhodolets VV
    Genetika; 1981; 17(9):1606-17. PubMed ID: 7028566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutations of resistance to 5-fluorouracil in Escherichia coli K-12. I. Genetic mapping and properties of mutants of Escherichia coli K-12, resistant to low concentrations of 5-fluorouracil.
    Mironov AS; Sukhodolets VV; Smirnov YuV
    Sov Genet; 1974 May; 8(3):328-36. PubMed ID: 4602917
    [No Abstract]   [Full Text] [Related]  

  • 12. Genetic and physiological investigation of rifampicin-resistant RNA-polymerase mutants of Escherichia coli K-12. Communication I. Study of certain genotypic and phenotypic properties of rifampicin-resistant mutants.
    Alikhanyan SI; Tovmasyan KN; Severina IA
    Sov Genet; 1974 Sep; 8(10):1296-302. PubMed ID: 4612738
    [No Abstract]   [Full Text] [Related]  

  • 13. [Experimental methods of bacterial conjugation].
    Ishibashi M; Hirota Y; Nishimura Y
    Tanpakushitsu Kakusan Koso; 1972; 17():Suppl:44-63. PubMed ID: 4557715
    [No Abstract]   [Full Text] [Related]  

  • 14. A unitary account of the repression mechanism of arginine biosynthesis in Escherichia coli. I. The genetic evidence.
    Jacoby GA; Gorini L
    J Mol Biol; 1969 Jan; 39(1):73-87. PubMed ID: 4938817
    [No Abstract]   [Full Text] [Related]  

  • 15. Analysis of genetic regulatory mechanisms.
    Beckwith J; Rossow P
    Annu Rev Genet; 1974; 8():1-13. PubMed ID: 4613253
    [No Abstract]   [Full Text] [Related]  

  • 16. Regulation: positive control.
    Englesberg E; Wilcox G
    Annu Rev Genet; 1974; 8():219-42. PubMed ID: 4374117
    [No Abstract]   [Full Text] [Related]  

  • 17. [Regulatory mutants with regard to nucleoside catabolism genes in Escherichia coli K-12, produced by using F' strains].
    Molchanova ES; Sukhodolets VV; Smirnov IuV
    Genetika; 1974; 10(10):101-9. PubMed ID: 4220048
    [No Abstract]   [Full Text] [Related]  

  • 18. The nature of mutations of resistance to ribosides in thymine auxotrophs of Escherichia coli K-12.
    Pukhova ES; Baumanis GE; Chukanova TI; Sukhodolets VV
    Sov Genet; 1974 Oct; 8(11):1401-8. PubMed ID: 4614468
    [No Abstract]   [Full Text] [Related]  

  • 19. Genetic mapping of the phoR regulator gene of alkaline phosphatase in Escherichia coli.
    Bracha M; Yagil E
    J Gen Microbiol; 1969 Nov; 59(1):77-81. PubMed ID: 4903904
    [No Abstract]   [Full Text] [Related]  

  • 20. Simultaneous selection of mutants in gluconeogenesis and nucleoside catabolism in Salmonella typhimurium.
    Jargiello P
    Biochim Biophys Acta; 1976 Aug; 444(1):321-5. PubMed ID: 182268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.