These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 4604126)
1. Assay for nonenzymatic and enzymatic translocation with Escherichia coli ribosomes. Pestka S Methods Enzymol; 1974; 30():462-70. PubMed ID: 4604126 [No Abstract] [Full Text] [Related]
2. A resolution of conflicting reports concerning the mode of action of fusidic acid. Burns K; Cannon M; Cundliffe E FEBS Lett; 1974 Mar; 40(1):219-23. PubMed ID: 4368349 [No Abstract] [Full Text] [Related]
3. Properties of elongation factor G: its interaction with the ribosomal peptidyl-site. Chinali G; Parmeggiani A Biochem Biophys Res Commun; 1973 Sep; 54(1):33-9. PubMed ID: 4582381 [No Abstract] [Full Text] [Related]
4. Participation in protein biosynthesis of transfer ribonucleic acids bearing altered 3'-terminal ribosyl residues. Chinali G; Sprinzl M; Parmeggiani A; Cramer F Biochemistry; 1974 Jul; 13(15):3001-10. PubMed ID: 4601427 [No Abstract] [Full Text] [Related]
5. The binding of the pyrophosphoryl transferase and the elongation factor Tu and G to ribosomes from Escherichia coli. Kleinert U; Richter D FEBS Lett; 1975 Jul; 55(1):188-93. PubMed ID: 166884 [No Abstract] [Full Text] [Related]
6. Studies on translocation of F-MET-tRNA and peptidyl-tRNA with antibiotics. Tanaka N; Lin YC; Okuyama A Biochem Biophys Res Commun; 1971 Jul; 44(2):477-83. PubMed ID: 4946069 [No Abstract] [Full Text] [Related]
13. Inhibitory effect of EF G and GMPPCP on peptidyl transferase. Otaka T; Kaji A FEBS Lett; 1974 Aug; 44(3):324-9. PubMed ID: 4606672 [No Abstract] [Full Text] [Related]
14. Cyclic blockade of initiation sites by streptomycin-damaged ribosomes in Escherichia coli: an explanation for dominance of sensitivity. Wallace BJ; Davis BD J Mol Biol; 1973 Apr; 75(2):377-90. PubMed ID: 4580681 [No Abstract] [Full Text] [Related]
15. Amino acylaminonucleoside inhibitors of protein synthesis. II. Effect on oligophenylalanine formation. Coutsogeorgopoulos C Biochim Biophys Acta; 1971 Jun; 240(1):137-50. PubMed ID: 4940153 [No Abstract] [Full Text] [Related]
16. Evidence that fusidic acid inhibits the binding of aminoacyl-tRNA to the donor as well as the acceptor site of the ribosomes. Otaka T; Kaji A Eur J Biochem; 1973 Sep; 38(1):46-53. PubMed ID: 4590123 [No Abstract] [Full Text] [Related]
17. On the mechanism of coded binding of aminoacyl-tRNA to ribosomes: number and properties of sites. Swan D; Sander G; Bermek E; Krämer W; Kreuzer T; Arglebe C; Zöllner R; Eckert K; Mathaei H Cold Spring Harb Symp Quant Biol; 1969; 34():179-96. PubMed ID: 4909496 [No Abstract] [Full Text] [Related]
18. Ribonuclease sensitivity of aminoacyl-tRNA: an assay for codon recognition and interaction of aminoacryl-tRNA with 50 S subunits. Pestka S Methods Enzymol; 1974; 30():439-52. PubMed ID: 4605065 [No Abstract] [Full Text] [Related]
19. Failure of fusidic acid and siomycin to block ribosomes in the pretranslocated state. Celma ML; Vazquez D; Modolell J Biochem Biophys Res Commun; 1972 Sep; 48(5):1240-6. PubMed ID: 4560008 [No Abstract] [Full Text] [Related]
20. Mechanism of the inhibition of protein synthesis by kirromycin. Role of elongation factor Tu and ribosomes. Wolf H; Chinali G; Parmeggiani A Eur J Biochem; 1977 May; 75(1):67-75. PubMed ID: 324765 [No Abstract] [Full Text] [Related] [Next] [New Search]